995 resultados para copper polymetal deposit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alteration zones at the gold-rich Bajo de la Alumbrera porphyry copper deposit in northwestern Argentina are centered on several porphyritic intrusions. They are zoned from a central copper-iron sulfide and gold-mineralized potassic (biotite-K-feldspar +/- quartz) core outward to propylitic (chlorite-illite-epidote-calcite) assemblages. A mineralized intermediate argillic alteration assemblage (chlorite-illite +/- pyrite) has overprinted the potassic alteration zone across the top and sides of the deposit and is itself zoned outward into phyllic (quartzinuscovite-illite +/- pyrite) alteration. This study contributes new data to previously reported delta(18)O and delta D compositions of fluids responsible for the alteration at Bajo de la Alumbrera, and the data are used to infer likely ore-forming processes. Measured and calculated delta(18)O and delta D values of fluids (+8.3 to +10.2 and -33 to -81 parts per thousand, respectively) confirm a primary magmatic origin for the earliest potassic alteration phase. Lower temperature potassic alteration formed from magmatic fluids with lower delta D values (down to -123 parts per thousand). These depleted compositions are distinct from meteoric water and consistent with degassing and volatile exsolution of magmatic fluids derived from an underlying magma. Variability in the calculated composition of fluid associated with potassic alteration is explained in terms of phase separation (or boiling). if copper-iron sulfide deposition occurred during cooling (as proposed elsewhere), this cooling was largely a result of phase separation. Magmatic water was directly involved in the formation of overprinting intermediate argillic alteration assemblages at Bajo de la Alumbrera. Calculated delta(18)O and delta D values of fluids associated with this alteration range from +4.8 to +8.1 and -31 to -71 per mil, respectively Compositions determined for fluids associated with phyllic alteration (-0.8 to +10.2 and -31 to -119 parts per thousand) overlap with the values determined for the intermediate argillic alteration. We infer that phyllic alteration assemblages developed during two stages; the first was a high-temperature (400 degrees-300 degrees C) stage with D-depleted water (delta D = -66 to -119 parts per thousand). This compositional range may have resulted from magma degassing and/or the injection of new magmatic water into a compositionally evolved hydrothermal system. The isotopic variations also can be explained by increased fluid-rock interaction. The second stage of phyllic alteration occurred at a lower temperature (similar to 200 degrees C), and variations in the modeled isotopic compositions imply mixing of magmatic and meteoric waters. Ore deposition that occurred late in the evolution of the hydrothermal system was probably associated with further cooling of the magmatic fluid, in part caused by fluid-rock interaction and phase separation. Changing pH and/or oxygen fuoracity may have caused additional ore deposition. The ingress of meteoric water appears to postdate the bulk of mineralization and occurred as the system at Bajo de la Alumbrera waned.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the treatment of copper ores by hydro-electro-metallurgical methods, not only is copper deposited, but other metals are also dissolved. In practice it has been found* that iron, under certain conditions, causes the copper to deposit on the cathode as a nonadherent precipitate and also that the iron in solution causes a great decrease in current efficiency, es­pecially when the electrolysis is conducted by operating with a higher current density at the cathode than at the anode. The present investigation deals with the effects of the two valences of iron on the current efficiency and endeavors to determine whether or not there is a ratio of the two at which point the efficiency becomes zero or approaches it.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The late Miocene Farallon Negro volcanics, comprising basaltic to rhyodacitic volcano-sedimentary rocks, host the Bajo de la Alumbrera porphyry copper-gold deposit in northwest Argentina. Early studies of the geology of the district have underpinned the general model for porphyry ore deposits where hydrothermal alteration and mineralization develop in and around porphyritic intrusions emplaced at shallow depths (2.5-3.5 km) into stratovolcanic assemblages. The Farallon Negro succession is dominated by thick sequences of volcano-sedimentary breccias, with lavas forming a minor component volumetrically. These volcaniclastic rocks conformably overlie crystalline basement-derived sedimentary rocks deposited in a developing foreland basin southeast of the Puna-Altiplano plateau. Within the Farallon Negro volcanics, volcanogenic accumulations evolved from early mafic to intermediate and silicic compositions. The younger and more silicic rocks are demonstrably coeval and comagmatic with the earliest group of mineralized porphyritic intrusions at Bajo de la Alumbrera. Our analysis of the volcanic stratigraphy and facies architecture of the Farallon Negro volcanics indicates that volcanic eruptions evolved from effusive to mixed effusive and explosive styles, as magma compositions changed to more intermediate and silicic compositions. Air early phase of mafic to intermediate voleanism was characterized by small synsedimentary intrusions with peperitic contacts, and lesser lava units scattered widely throughout the district, and interbedded with thick and extensive successions of coarse-grained sedimentary breccias. These sedimentary breccias formed from numerous debris- and hyperconcentrated flow events. A later phase of silicic volcanism included both effusive eruptions, forming several areally restricted lavas, and explosive eruptions, producing more widely dispersed (up to 5 kin) tuff units, some tip to 30-m thickness in proximal sections. Four key features of the volcanic stratigraphy suggest that the Farallon Negro volcanics need not simply record the construction of a large steep-sided polygenetic stratovolcano: (1) sheetlike, laterally continuous debris-flow and other coarse-grained sedimentary deposits are dominant, particularly in the lower sections; (2) mafic-intermediate composition lavas are volumetrically minor; (3) peperites are present throughout the sequence; and (4) fine-grained lacustrine sandstone-siltstone sequences occur in areas previously thought to be proximal to the summit region of the stratovolcano. Instead, the nature, distribution, and geometry of volcanic and volcaniclastic facies suggest that volcanism occurred as a relatively low relief, multiple-vent volcanic complex at the eastern edge of a broad, > 200-km-wide late Miocene volcanic belt and oil ail active foreland sedimentary basin to the Puna-Altiplano. Volcanism that occurred synchronously with the earliest stages of porphyry-related mineralization at Bajo de la Alumbrera apparently developed in an alluvial to ring plain setting that was distal to larger volcanic edifices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Daolangheduge copper polymetallic deposit is located on east edge of Ondor Sum-Bainaimiao metallogenic belt, which is a prospective area of porphyry copper deposit, in Xianghuangqi of central Inner Mongolia. Geotectonically, it occurred in the continental margin accretion belt along the north margin of North China Plate, south of the suture zone between North China Plate and Siberian Plate. The intrusive rocks in this area mainly consist of intermediate-acid magmatic rocks, and the quartz veins, tourmaline veins and the transitional phase are comparatively developed. According to our research, the ore-bearing rock body is mainly quartz diorite while the surrounding rock is mainly biotite granite. Besides, the wall rock alteration are mainly propylitization, pyritization and silicification, which consist of epidotization, actinolitization, chloritzation and so on. The metallic minerals are mainly chalcopyrite and pyrite. In addition, the primary ore is mainly of quartz-chalcopyrite-pyrite type. Above all, Daolangheduge copper polymetallic deposit is suggested to be categorized in the porphyry copper type. With isotopic dating and geochemical research on quartz diorite of ore-bearing rock body, the zircon LA-ICP-MS U-Pb dating of two samples yields an age of 266±2 Ma, falling into the range of late Permian Epoch. It is the first accurate age data in Xianghuangqi area, so it should play a key role in the research of deposit and magmatic rocks in this area. With the major elements and trace elements analysis of 14 samples, the quartz diorite should be among the calc-alkaline series, the geochemical characteristics show higher large-ion lithophile elements of Rb, Sr and LREE, low high-field strength elements of Nb, Ta and high transition elements of Cu, Cr . Also, the REE patterns have negative Eu anomalies. With the same analysis of 4 sample for the biotite granite, the geochemical characteristics show higher Rb, Th,, Zr, Hf and LREE, low Nb, Sm and HREE and Eu has no anomaly. It should be among the calc-alkaline series, over aluminum quality and has characteristics of Adakites. According to isotopic dating and geochemical characteristics of ore-bearing rock body, it is suggested that its materials mainly derived from upper mantle that had fractional crystallization and its magma source region may be affected by fluid metasomatism of paleo-asian ocean. It should be an extensional process of post-orogeny according to regional tectonic evolution. Consequently, because of the decrease of temperature and pressure, the ore forming fluid was raised to surface and mineralized accompanied by magmatic activity which might occur in south of the suture zone. By geological survey, further geophysical and geochemical work is needed. In this area, we have accomplished high precision magnetic prospecting, high density electrical survey, gravity prospecting, soil geochemical prospecting, X-ray fluorescence analyzer prospecting and so on. According to geophysical and geochemical abnormal and surface occurrence, 11 drills are arranged to verification. The type of ores are mainly quartz-chalcopyrite-pyrite ores within 3 drills by drill core logging. Although the grade as well as the scale of already-found Cu deposits are insufficient for industrial exploitation, the mineralization prospect in this region is supposed to be great and the potential in mineral exploration at depth is excellent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

These are two parts included in this report. In the first part, the zonation of the complexes in its series, lithofacies, the depth of magma source and chambers is discussed in detailed for the first time based on the new data of petrol-chemistry, isotopes, tectono-magma activity of Mesozoic volcano-plutonic complexes in the southern Great Hinggan Mts. Then, the genetic model of the zonality, double overlapped layer system, is proposed. The main conclusions are presented as follows: The Mesozoic volcanic-plutonic complexes in the southern Great Hinggan were formed by four stages of magma activity on the base of the subduction system formed in late Paleozoic. The Mesozoic magmatic activity began in Meso-Jurassic Epoch, flourished in late Jurassic Epoch, and declined in early Cretaceous Epoch. The complexes consist dominantly of acidic rocks with substantial intermediate rocks and a few mefic ones include the series of calc alkaline, high potassium calc alkaline, shoshonite, and a few alkaline. Most of those rocks are characterized by high potassium. The volcano-plutonic complexes is characterized by zonality, and can be divided mainly into there zones. The west zone, located in northwestern side of gneiss zone in Great Xinggan mountains, are dominated of high potassium basalts and basaltic andesite. The middle zone lies on the southeast side of the Proterozoic gneiss zone, and its southeast margin is along Huangganliang, Wushijiazi, and Baitazi. It composed of dominatly calc-alkaline, high potassium calc-alkaline rocks, deep granite and extrusive rhyolite. The east zone, occurring along Kesheketong Qi-Balinyou Qi-Balinzuo Qi, is dominated of shoshonite. In generally, southeastward from the Proterozoic gneiss zone, the Mesozoic plutons show the zones-mica granitites zone, hornblende-mica granitite zone, mica-hornblende granitite zone; the volcanic rocks also display the zones of calc alkaline-high potassium calc alkaline and shoshonites. In the same space, the late Paleozoic plutons also display the same zonality, which zones are combined of binary granite, granodiorite, quartz diorite and diorite southeast wards from the gneiss. Meso-Jurassic Epoch granite plutons almost distribute in the middle zone on the whole. Whereas late Jurassic Epoch volcanic rocks distribute in the west and east zone. This distribution of the volcano-plutonic complexes reveals that the middle zone was uplifted more intensively then the other zones in Meso-Jurassic and late Jurassic Epoches. Whole rock Rb-Sr isochron ages of the high potassium calc-alkaline volcanic rocks in the west zone, the calc-alkaline and high potassium calc-alkaline granite the middle zone, shoshonite in the east zone are 136Ma, 175Ma and 154Ma, respectively. The alkaline rocks close to the shoshonite zone is 143Ma and 126Ma. The isochron ages are comparable well with the K-Ar ages of the rocks obtained previously by other researchers. The compositions of Sr ans Nd isotopes suggest that the source of Mesozoic volcanic-plutonic complexes in Great Hinggan Mts. is mostly Paleo-Asia oceanic volcanic-sedimentary rocks, which probably was mixed by antiquated gneiss. The tectonic setting for Mesozoic magmatism was subductive continental margin. But this it was not directly formed by present west Pacific subduction. It actully was the re-working of the Paleozoic subduction system( which was formed during the Paleo-Asia ocean shortening) controlled by west Pacific subduction. For this reason, Although Great Hinggan Mts. is far away from west Pacific subduction zone, its volcanic arc still occurred echoing to the volcanic activities of east China, it, but the variation trend of potassium content in volcano-plutonic complexes of Great Hinggan is just reverse to ones of west Pacific. The primitive magmas occurred in the southern Great Hinggan Mts. Include high-potassium calc-alkaline basalt, high potassium calc-alkaline rhyolite, high potassium rhyolite, non-Eu negative anomaly trachy-rhyolite et al. Therefore, all of primitive magmas are either mafic or acid, and most of intermediate rocks occurring in the area are the products of Mesozoic acid magma contaminated by the Paleozoic volcanic- sedimentary rocks. The depth of those primitive magma sources and chambers gradually increase from northwest to southeast. This suggests that Paleozoic subduction still controlled the Mesozoic magmatism. In summary, the lithosphere tectonic system of the southern Great Hinggan Mts. controlling Mesozoic magmatism is a double overlapped layer system developing from Paleozoic subduction system. For this reason, the depth of crust of the southern Great Hinggan Mts. is thicker than that of its two sides, and consequently it causes regional negative gravity abnormity. The second part of this report shows the prolongation of the research work carried on in my doctor's period. Author presents new data about Rb-Sr and Sm-Nd isotopic compositions and ages, geochamical features, genesis mineralogy and ore deposit geology of the volcanic rocks in Kunyang rift. On the base of the substantial work, author presents a prospect of copper bearing magnetite ore deposit. The most important conclusions are as follows: 1. It is proved that all of these carbonatites controlled by a ringing structure system in Wuding-Lufeng basin in the central Yunnan were formed in the Mesoproterozoic period. Two stages could be identified as follows: in the first stage, carbonatitic volcanic rocks, such as lavas(Sm-Nd, 1685Ma), basaltic porphyrite dykes(Sm-Nd, 1645Ma), pyroclastic rocks and volcaniclastic sedimentary rocks, formed in the outer ring; in the second stage, carbonatitic breccias and dykes(Rb-Sr, 1048 Ma) did in the middle ring. The metamorphic age of the carbonatitic lavas (Rb-Sr, 893 Ma) in the outer ring was determined. The magma of carbonatitic volcanic rocks derived mainly form enriched mantle whose basement is depleted mantle that had been metasomated by mantle fluid and contaminated by Archaean lower crust. Carbonatitic spheres were discovered in ore bearing layers in Lishi copper mining in Yimen recently, which formed in calcite carbonatitic magma extrusion. This discovery indicates that the formation of copper ore deposit genesis relates to carbonatitic volcanic activity. The iron and copper ore deposits occurring in carbonatitic volcanic- sedimentary rocks in Kunyang rift results from carbonatitic magmatism. Author calls this kind of ore deposits as subaqueous carbonatitic iron-copper deposit. The magnetic anomaly area in the north of Lishi copper mining in Yimen was a depression more lower than its circumference. Iron and copper ores occurrig on the margin of the magnetic anomaly are volcanic hydrothermal deposit. The magnetic body causing the magnetic anomaly must be magnetite ore. Because the anomaly area is wide, it can be sure that there is a large insidious ore deposit embedding there.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

稀矿山式铜矿是指赋存在昆阳群因民组地层中的铜铁矿床,其大地构造背景属于元古代裂谷带,大陆裂谷是超大型铜等多金属矿形成和分布的有利环境,在裂谷下部常发育异常地慢和岩浆源,裂谷空间上的多层次性使矿床具有明显垂向分带特征,其演化时间的长期性、脉动性和继承性便于多期成矿作用相互叠加、矿质的高度聚集。稀矿山式铜矿以落雪矿区稀矿山矿段最为典型,主要分布在因民落雪大乔地一稀矿山、滥山、磨子山,滥泥坪6-4巷、白锡腊和拖布卡地区。该类矿床广布于康滇地轴南段东川、武定一罗茨、元江、易门狮子山、金沙江南岸的花生坪、红门厂等地,已知中型铜矿床1处(稀矿山)、中型铁矿床2处(鹅头厂、笔架山)、小型铜(铁)矿床多处,上世纪90年代易门狮子山该类矿床的发现,表明该类矿床在东川-易门具找矿潜在远景。本文通过对东川矿区稀矿山式铜矿的常量元素、微量元素、包裹体、同位素及同位素定年等地球化学研究,获得以下认识:1.东川矿区地层(包括其下覆基底)和晋宁期碱基性岩中Cu等成矿元素背景值较高,且在蚀变过程中均能析出Cu等成矿元素。矿床中Cu等成矿物质来源复杂,以深源为主,部分来源于地层(因民组紫色层和落雪组白云岩)及基底地层:矿区内的退色蚀变作用可能是混合流体碱质交代改造作用的结果,对铜矿形成影响明显,是铜矿化的标志;2.该类矿床成矿流体属于中高温、中高盐度、高密度Na,(K+)Ca2+-SO42-(Cl-)型,以深部岩浆水为主,混有大量海水和变质水。矿床中发现了富NZ包裹体,可能是矿床形成时,深大断裂活动、碱基性岩浆带来地球深部(上地慢和下地壳)物质并形成的成矿流体,在氧化一去挥发分作用过程中所形成;3.铁矿体被铜矿体包围,铁矿石被铜矿细脉穿插,说明铜矿化的形成晚于铁矿化。黄铜矿单矿物的Re-05同位素年龄研究表明其成矿年龄为826士230Ma,接近矿区碱基性岩年龄,与昆阳裂谷内其它类型铜矿成矿时代相当,均属于晋宁-澄江期;4.东川矿区晋宁一澄江期碱基性岩侵入活动明显,常作为因民组复杂角砾岩胶结物和岩脉(体)产出,多分布于深大断裂及其派生的次级构造附近,明显受南北向小江深大断裂走滑运动引起的右行旋扭及其派生构造控制,与“落因破碎带”和“铜矿分布”较吻合,均为“Z”字形。表明东川矿区铜矿形成与深大断裂及其派生次级构造和,宁-澄江期碱基性岩侵入活动关系密切;5.昆阳裂谷内的多数铜矿同位素成矿年龄多集中在9.0亿-6.5亿年之间,属于晋宁-澄江期,与Redina大陆裂解时限相当。表明裂谷内铜矿床的形成可能与Rodinia大陆裂解有关。因此,总结东川稀矿山式铜矿成矿模式为沉积(Fe、Cu)-热液叠加(Cu)改造:晋宁-澄江期,小江深大断裂发生走滑运动,在东川矿区造成右行旋扭及其派生构造,形成“Z”,字形落因破碎带,同时来自深源(下地壳或上地慢)碱基性岩浆侵入,不仅带来了大量Cu等成矿物质,更重要的是提供了热源,促使地层水(落雪组白云岩和因民组紫色层)循环,与富碱(Na和K)岩浆水混合,形成富碱中高温高盐度流体。因民组紫色层与其底部角砾岩接触带,具有较高的空隙度和渗透率,有利于成矿流体的运移和成矿。在这种混合流体作用下,地层中Cu等成矿物质析出,叠加改造了初始铜矿化最终形成稀矿山式铜矿。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A possibilidade do desenvolvimento de técnicas de aplicação de produtos fitossanitários mais seguras, com menores volumes de calda, número de aplicações e deriva, aliados à necessidade de se obter melhores níveis de controle dos agentes nocivos às plantas cultivadas, justificam o uso da assistência de ar junto à barra de pulverização. Com o objetivo de avaliar a deposição da pulverização na cultura do feijoeiro (Phaseolus vulgaris), em presença e ausência da assistência de ar junto à barra de pulverização, com diferentes pontas de pulverização e volumes de calda, foi conduzido um experimento em delineamento inteiramente casualizado, utilizando-se como traçador o óxido cuproso. Alvos artificiais (papel filtro com 3 x 3 cm) foram afixados nas superfícies adaxial e abaxial de folíolos posicionados nos terços superior e inferior de plantas, selecionadas ao acaso, distribuídas perpendicularmente ao deslocamento do pulverizador. Após a aplicação do traçador os coletores foram lavados individualmente em solução extratora de ácido nítrico a 1,0 mol L-1. A determinação quantitativa dos depósitos foi realizada com o uso da espectrofotometria de absorção atômica. A assistência de ar junto à barra de pulverização não aumentou a deposição do traçador em folíolos de feijoeiro, aos 48 dias após a emergência da cultura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical analyses were performed on seveteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-SiO2. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical and X-ray analyses were performed on the fifteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-Si02. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones. The analyses of fresh water iron-manganese precipitates by bacterial activity suggest that biological process is one of the important factors on the genesis of the sedimentary iron-manganese deposits, in¬cluding the manganese nodule.