995 resultados para copper determination


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid paraffin-based carbon paste electrodes modified with 2-aminothiazole organofunctionalized silica have been applied to the anodic stripping determination of copper ions in ethanol fuel samples without any sample treatment. The proposed method comprised four steps: (1) copper ions preconcentration at open circuit potential directly in the ethanol fuel sample; (2) exchange of the solution and immediate cathodic reduction of the absorbate at controlled potential; (3) differential pulse anodic stripping voltammetry; (4) electrochemical surface regeneration by applying a positive potential in acid media. Factors affecting the preconcentration, reduction and stripping steps were investigated and the optimum conditions were employed to develop the analytical procedure. Using a preconcentration time of 20 min and reduction time of 120 s at -0.3 V versus Ag/AgCl(sat) a linear range from 7.5 x 10(-8) to 2.5 x 10(-6) mol L(-1) with detection limit of 3.1 x 10(-8) mol L(-1) was obtained. Interference studies have shown a decrease in the interference effect according to the sequence: Ni > Zn > Cd > Pb > Fe. However, the interference effects of these ions have not forbidden the application of the proposed method. Recovery values between 98.8 and 102.3% were obtained for synthetic samples spiked with known amounts of Cu(2+) and interfering metallic ions. The developed electrode was successfully applied to the determination of Cu(2+) in commercial ethanol fuel samples. The results were compared to those obtained by flame atomic absorption spectroscopy by using the F-test and t-test. Neither F-value nor t-value have exceeded the critical values at 95% confidence level, confirming that there are no significant differences between the results obtained by both methods. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-This work shows an alternative method to copper determination by X-Ray Fluorescence (XRF). Since copper concentration in natural waters is not enough to reach XRF detection limit, a liquid-solid preconcentration procedure was proposed. Glycerin was used to complex the metal increasing its adsorption on activated charcoal. The solid phase was used to XRF determination. Several parameters were evaluated, such as, the complexation pH, the charcoal adsorption limit and the glycerin concentration. The interferences are lead and bismuth and the sensitivities decreased in the order Cu2+, Bi3+ and Pb2+. The advantages of the method are its simplicity, low cost and low spectral interference.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, a simple and rapid ligand-less, in situ, surfactant-based solid phase extraction for the preconcentration of copper in water samples was developed. In this method, a cationic surfactant (n-dodecyltrimethylammonium bromide) was dissolved in an aqueous sample followed by the addition of an appropriate ion-pairing agent (ClO4-). Due to the interaction between the surfactant and ion-pairing agent, solid particles were formed and subsequently used for the adsorption of Cu(OH)2 and CuI. After centrifugation, the sediment was dissolved in 1.0 mL of 1 mol L-1 HNO3 in ethanol and aspirated directly into the flame atomic absorption spectrometer. In order to obtain the optimum conditions, several parameters affecting the performance of the LL-ISS-SPE, including the volumes of DTAB, KClO4, and KI, pH, and potentially interfering ions, were optimized. It was found that KI and phosphate buffer solution (pH = 9) could extract more than 95% of copper ions. The amount of copper ions in the water samples varied from 3.2 to 4.8 ng mL-1, with relative standard deviations of 98.5%-103%. The determination of copper in water samples was linear over a concentration range of 0.5-200.0 ng mL-1. The limit of detection (3Sb/m) was 0.1 ng mL-1 with an enrichment factor of 38.7. The accuracy of the developed method was verified by the determination of copper in two certified reference materials, producing satisfactory results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L(-1) HNO(3). The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 mu g L(-1), with a detection limit estimated as 3 mu g L(-1) at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111 % range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L(-1) KNO(3) with pH adjusted to 2.25 with HNO(3), an accumulation potential of 0.3V vs. Ag/AgCl (3.0 mol L(-1) KCl) for 300 s and a scan rate of 100 mV s(-1). Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 x 10(-8) to 1.60 x 10(-5) mol L(-1) with a detection limit of 1.00 x 10(-8) mol L(-1). The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work develops and optimizes a method to determine copper in samples of feces and fish feed by graphite furnace atomic absorption spectrometry (GFAAS) through the direct introduction of slurries of the samples into the spectrometer's graphite tube coated internally with metallic rhodium and tungsten carbide that acts as chemical modifiers. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (0.50% m/v of feces or feed devoid of copper) were 0.24 and 0.79 μg L -1 for the standard feces slurries and 0.26 and 0.87 μg L -1 for the standard feed slurries. The proposed method was applied in studies of absorption of copper in different fish feeds and their results proved compatible with that obtained from samples mineralized by acid digestion using microwave oven. © Springer Science+Business Media, LLC 2008.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study proposes a method for cloud point preconcentration of copper ions at pH 2.0 based on complexes formed with [4,5-dimercapto-1,3-dithyol-2-thionate] and subsequent determination by flame atomic absorption spectrometry (FAAS). Under optimal analytical conditions, the method provided limits of detection of 0.84 and 0.45 µg L-1, by preconcentrating 12.0 and 24.0 mL of sample, respectively. The method was applied for copper determination in water samples, synthetic saliva, guarana powder, tea samples and soft drinks and the accuracy was assessed by analyzing the certified reference materials Dogfish Liver (DOLT-4) and Lobster Hepatopancreas (TORT-2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This aim of this work was to compare two methods for copper determination in insulating oils from power transformers by GFAAS. The first method was extraction induced by emulsion breaking, which determined the preconcentration of copper in an aqueous solution and exhibited a limit of quantification of 0.27 µg L-1. Also, a second method based on the direct introduction of samples into GFAAS in the form of detergent emulsions, prepared with Triton X-114 and HNO3, was investigated. In this case, the limit of quantification was 1.7 µg L-1. Seven samples of used oils were successfully analyzed by both methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Indigo carmine forms a stable complex with different ions, and the stability constant of the complexes were evaluated as log K equal to 5.75; 5.00; 4.89 and 3.89 for complexes with Cu(II), Ni(II), Co(II) and Zn(II) ions, respectively, in 0.1 mol L -1 carbonate buffer solution at pH 10. The interaction between Cu(II) ions and indigo carmine (IC) in alkaline medium resulted in the formation of the Cu 2(IC) complex, measured by the spectrophotometric method, with a stoichiometric ratio between indigo carmine and metal ions of 2:1 (metal-ligand). The reported method has also been successfully tested for determination of copper in pharmaceutical compounds based on copper-gluconate without pre-treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)