811 resultados para copper adsorption
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In environmental studies it is necessary to know the adsorption behavior of metals by soils, since the unfavorable effects of heavy metals and even the micronutrients at high concentrations in the environment are related to these adsorbents' ability to immobilize them. A sample of a humic yellow red oxisol from Araponga region in the State of Minas Gerais, Brazil, was used to verify the adsorption behavior of Cu2+ ions in this substrate. The mathematical model described by Langmuir's adsorption equation in its linearized form was applied and the values of the maximum capacity b and those of the constant related to the bonding energy a were obtained. Aliquots of copper nitrate solutions containing several concentrations of this metal were added to soil samples, the pH being predetermined for developing the adsorption experiments. The chemical and physical characterization of soil sample were performed by determining the organic carbon, nitrogen and phosphorus concentrations, cation exchange capacity (CEC), pH, concentration of metals (Al, Fe, K, Mg, Ca, Zn, Cu, Ni, Cr, Co, Pb, and Cd), granulometric analysis and X-ray diffraction. Langmuir isotherms presented two distinct adsorption regions at both pH 4 and pH 5, showing that the adsorptive phenomenon occurs in two distinct stages. The adsorption sites for the lower part presented greater bonding energy and low adsorption capacity compared with the adsorption sites of the part of the curve corresponding to higher Cu concentrations in the equilibrating solution.
Resumo:
It was evaluated the applicability of Langmuir, Freundlich and Temkin models to copper adsorption in three classes of soils. Fractions of each soil were added to test tubes containing growing concentrations of the metal in solution. The tubes were shaken and the copper concentrations were determined in the extracts by atomic absorption spectrometry (AAS). The models offered a good fit for the experimental data indicating that presence of silicated clay had high influence on copper sorption. The Langmuir isotherm showed high influence of the organic matter in the absorption phenomenon. It was evidenced the importance of further studies related to Temkin model.
Resumo:
The adsorption of Cu(II) ions from aqueous solution by chitosan using a column in a closed hydrodynamic flow system is described. The adsorption capacities as a function of contact time of copper(II) ions and chitosan were determined by varying the ionic strength, temperature and the flow of the metal solution. The Langmuir model reproduced the adsorption isothermal data better than the Freundlich model. The experimental kinetic data correlate properly with the second-order kinetic reaction for the whole set of experimental adsorption conditions. The rate constants exercise great influence on the time taken for equilibrium to be established by complexation or electrostatic interaction between the amino groups of chitosan and the metal.
Resumo:
Characterization of fish scales of Leporinus elongatus and their application in the removal of Cu(II) from aqueous solutions are described. It was observed that the scales are mainly formed by hydroxyapatite and type I collagen. Adsorption of Cu(II) was performed using batch experiments at 25 0C. The ANOVA statistical results have shown that the Langmuir model was successful applied to determine the maximum adsorption capacity of 2.686 x10-4 mol g-1 and the Langmuir equilibrium parameter (b) of 168.8 L mol-1. The Langmuir separation parameter, R L, has shown favorable adsorption of Cu(II) on the scales.
Resumo:
Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.
Resumo:
We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.
Resumo:
Currently microporous oxidic materials including zeolites are attracting interest as potential hydrogen storage materials. Understanding how molecular hydrogen interacts with these materials is important in the rational development of hydrogen storage materials and is also challenging theoretically. In this paper, we present an incoherent inelastic neutron scattering (INS) study of the adsorption of molecular hydrogen and hydrogen deuteride (HD) in a copper substituted ZSM5 zeolite varying the hydrogen dosage and temperature. We have demonstrated how inelastic neutron scattering can help us understand the interaction of H-2 molecules with a binding site in a particular microporous material, Cu ZSM5, and by implication of other similar materials. The H-2 molecule is bound as a single species lying parallel with the surface. As H-2 dosing increases, lateral interactions between the adsorbed H-2 molecules become apparent. With rising temperature of measurement up to 70 K (the limit of our experiments), H-2 molecules remain bound to the surface equivalent to a liquid or solid H-2 phase. The implication is that hydrogen is bound rather strongly in Cu ZSM5. Using the simple model for the anisotropic interaction to calculate the energy levels splitting, we found that the measured rotational constant of the hydrogen molecule is reduced as a consequence of adsorption by the Cu ZSM5. From the decrease in total signal intensity with increasing temperature, we were able to observe the conversion of para-hydrogen into ortho-hydrogen at paramagnetic centres and so determine the fraction of paramagnetic sites occupied by hydrogen molecules, ca. 60%. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The isotherms of adsorption of MX2 (M = Cu2+, Co2+; X = Cl-, Br-, ClO4) by silica gel chemically modified with 3-amino-1,2,4-triazole (SiATR) were studied in acetone and ethanol solutions, at 25 degrees C. The 3-amino-1,2,4-triazole molecule, covalently bound to the silica gel surface, adsorbs MX2 from solvent by forming a surface complex. At low loading, the electronic and electron spin resonance spectral parameters indicated that the Cu2+ complexes have distorted tetragonal symmetry. The CoX2 (X = Cl-, Br-) analogues exhibit a distorted-tetrahedral geometry, whilstthe (SiATR)mCo)ClO4)(2) complex has a tetragonally distorted octahedral geometry, with four equatorial nitrogen atoms around the cobalt. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The isotherms of adsorption of CuX2 (X=Cl-, Br-, ClO- 4) by silica gel chemically modified with 2-aminothiazole were studied in acetone and EtOH solutions, at 25°C. The 2-aminothiazole molecule, covalently bond to the silica gel surface, adsorbs CuX2 from solvent by forming a surface complex. At low loading, the electronic and E.S.R. spectral parameters indicate that the Cu2+ complexes have a distorted tetragonal symmetry. The d-d eletronic transition spectra show that for ClO- 4 complex, the peak of absorption do not change for any degree of metal loading whilst for Cl- and Br- complexes, the peak maxima shift to higher energy with lower metal loading. © Elsevier Science Ltd.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
A heterogeneous copper catalyst supported on mesoporous MCM-41 was developed. The parent MCM-41 has a large pore area of over 1400 m(2)/g. Copper was chosen as the active element of catalyst and loaded into MCM-41 by adsorption at ambient temperature. The prepared catalysts were evaluated in the catalytic wet oxidation of phenol solution with an initial concentration of 1,300 ppm at 150 and 200 degreesC. The catalyst was found to be of high catalytic activity. It is also shown that the catalyst with a higher copper loading exhibits higher ability of accelerating the catalytic reaction to certain extent but reaches its constant level afterwards. (C) 2001 Elsevier Science B.V. All rights reserved.