903 resultados para convergence of numerical methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.

We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.

We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.

The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.

Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.

The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical approximation of the long time behavior of a stochastic di.erential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this approach are its simplicity and universality. It works equally well for a range of explicit and implicit schemes, including those with simple simulation of random variables, and for hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach can be applied more widely. An analogy between our approach and Stein's method is indicated. Some practical implications of the results are discussed. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo documento descrive gran parte del lavoro svolto durante un periodo di studio di sei mesi all’International Centre for Geohazards (ICG) di Oslo. Seguendo la linea guida dettata nel titolo, sono stati affrontati diversi aspetti riguardanti la modellazione numerica dei pendii quali l’influenza delle condizioni al contorno e delle proporzioni del modello, la back-analysis di eventi di scivolamento e l’applicazione delle analisi di stabilità monodimensionali. La realizzazione di semplici modelli con il programma agli elementi finiti PLAXIS (Brinkgreve et al., 2008) ha consentito di analizzare le prestazioni dei modelli numerici riguardo all’influenza delle condizioni al contorno confrontandoli con un calcolo teorico del fattore di amplificazione. Questa serie di test ha consentito di stabilire alcune linee guida per la realizzazione di test con un buon livello di affidabilità. Alcuni case-history, in particolare quello di Las Colinas (El Salvador), sono stati modellati allo scopo di applicare e verificare i risultati ottenuti con i semplici modelli sopracitati. Inoltre sono state svolte analisi di sensitività alla dimensione della mesh e ai parametri di smorzamento e di elasticità. I risultati hanno evidenziato una forte dipendenza dei risultati dai parametri di smorzamento, rilevando l’importanza di una corretta valutazione di questa grandezza. In ultima battuta ci si è occupati dell’accuratezza e dell’applicabilità dei modelli monodimensionali. I risultati di alcuni modelli monodimensionali realizzati con il software Quiver (Kaynia, 2009) sono stati confrontati con quelli ottenuti da modelli bidimensionali. Dal confronto è risultato un buon grado di approssimazione accompagnato da un margine di sicurezza costante. Le analisi monodimensionali sono poi state utilizzate per la verifica di sensitività. I risultati di questo lavoro sono qui presentati e accompagnati da suggerimenti qualitativi e quantitativi per la realizzazione di modelli bidimensionali affidabili. Inoltre si descrive la possibilità di utilizzare modelli monodimensionali in caso d’incertezze sui parametri. Dai risultati osservati emerge la possibilità di ottenere un risparmio di tempo nella realizzazione di importanti indagini di sensitività.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 49N35,49N55,65Lxx.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.