966 resultados para convective-diffusive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The convective-diffusive transport of sub-micron aerosols in an oscillatory laminar flow within a 2-D single bifurcation is studied, using order-of-magnitude analysis and numerical simulation using a commercial software (FEMLAB®). Based on the similarity between momentum and mass transfer equations, various transient mass transport regimes are classified and scaled according to Strouhal and beta numbers. Results show that the mass transfer rate is highest at the carinal ridge and there is a phase-shift in diffusive transport time if the beta number is greater than one. It is also shown that diffusive mass transfer becomes independent of the oscillating outer flow if the Strouhal number is greater than one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temperature and velocity distributions of the air inside the cabinet of domestic refrigerators affect the quality of food products. If the consumer knows the location of warm and cold zones in the refrigerator, the products can be placed in the right zone. In addition, the knowledge of the thickness of thermal and hydrodynamic boundary layers near the evaporator and the other walls is also important. If the product is too close to the evaporator wall, freezing can occur, and if it is too close to warm walls, the products can be deteriorated. The aim of the present work is to develop a steady state computational fluid dynamics (CFD) model for domestic refrigerators working on natural convection regime. The Finite Volume Methodology is chosen as numerical procedure for discretizing the governing equations. The SIMPLE-Semi-Implicit Method for Pressure-Linked Equations algorithm applied to a staggered mesh was used for solving the pressure-velocity coupling problem. The Power-Law scheme is employed as interpolation function for the convective-diffusive terms, and the TDMA-Tri-Diagonal Matrix Algorithm is used to solve the systems of algebraic equations. The model is applied to a commercial static refrigerator, where the cabinet is considered an empty three-dimensional rectangular cavity with one drawer at the bottom of the cabinet, but without shelves. In order to analyze the velocity and temperature fields of the air flow inside the cabinet the evaporator temperature, Te, was varied from -20 degrees C to 0 degrees C, and nine different evaporator positions are evaluated for evaporator temperature of -15 degrees C. The cooling capacity of the evaporator for the steady state regime is also computed for each case. One can conclude that the vertical positioning of the evaporator inside the cabinet plays an important role on the temperature distribution inside the cabinet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional transient mathematical model (following a fixed-grid enthalpy-based continuum formulation) is used to study the interaction of double-diffusive natural convection and non-equilibrium solidification of a binary mixture in a cubic enclosure cooled from a side. Investigations are carried out for two separate test systems, one corresponding to a typical model "metal-alloy analogue" system and other corresponding to a real metal-alloy system. Due to stronger effects of solutal buoyancy in actual metal-alloy systems than in corresponding analogues, the convective transport mechanisms for the two cases are quite different. However, in both cases, similar elements of three-dimensionality are observed in the curvature and spacing of the projected streamlines. As a result of three-dimensional convective flow patterns, a significant solute macrosegregation is observed across the transverse sections of the cavity, which cannot be captured by two-dimensional simulations. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a transient two-dimensional numerical study of double-diffusive salt fingers in a two-layer heat-salt system for a wide range of initial density stability ratio (R-rho 0) and thermal Rayleigh numbers (Ra-T similar to 10(3) - 10(11)). Salt fingers have been studied for several decades now, but several perplexing features of this rich and complex system remain unexplained. The work in question studies this problem and shows the morphological variation in fingers from low to high thermal Rayleigh numbers, which have been missed by the previous investigators. Considerable variations in convective structures and evolution pattern were observed in the range of Ra-T used in the simulation. Evolution of salt fingers was studied by monitoring the finger structures, kinetic energy, vertical profiles, velocity fields, and transient variation of R-rho(t). The results show that large scale convection that limits the finger length was observed only at high Rayleigh numbers. The transition from nonlinear to linear convection occurs at about Ra-T similar to 10(8). Contrary to the popular notion, R-rho(t) first decrease during diffusion before the onset time and then increase when convection begins at the interface. Decrease in R-rho(t) is substantial at low Ra-T and it decreases even below unity resulting in overturning of the system. Interestingly, all the finger system passes through the same state before the onset of convection irrespective of Rayleigh number and density stability ratio of the system. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the first part of direct numerical simulation (DNS) of double-diffusive convection in a slim rectangular enclosure with horizontal temperature and concentration gradients. We consider the case with the thermal Rayleigh number of 10^5, the Pradtle number of 1, the Lewis number of 2, the buoyancy ratio of composition to temperature being in the range of [0,1], and height-to-width aspect ration of 4. A new 7th order upwind compact scheme was developed for approximation of convective terms, and a three-stage third-order Runge-Kutta method was employed for time advancement. Our DNS suggests that with the buoyancy ratio increasing form 0 to 1, the flow of transition is a complex series changing fromthe steady to periodic, chaotic, periodic, quasi-periodic, and finally back to periodic. There are two types of periodic flow, one is simple periodic flow with single fundamental frequency (FF), and another is complex periodic flow with multiple FFs. This process is illustrated by using time-velocity histories, Fourier frequency spectrum analysis and the phase-space rajectories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and viscous incompressible fluid along a heated vertical flat plate with uniform heat and mass flux in the presence of strong cross magnetic field has been investigated. For smooth integrations the boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation as well as the free variable formulation. The nonsimilar parabolic partial differential equations are integrated numerically for Pr ≪1 that is appropriate for liquid metals against the local Hartmann parameter ξ . Further, asymptotic solutions are obtained near the leading edge using regular perturbation method for smaller values of ξ . Solutions for values of ξ ≫ 1 are also obtained by employing the matched asymptotic technique. The results obtained for small, large and all ξ regimes are examined in terms of shear stress, τw, rate of heat transfer, qw, and rate of mass transfer, mw, for important physical parameter. Attention has been given to the influence of Schmidt number, Sc, buoyancy ratio parameter, N and local Hartmann parameter, ξ on velocity, temperature and concentration distributions and noted that velocity and temperature of the fluid achieve their asymptotic profiles for Sc ≥ 10:0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, 1.3 billion tonnes of food is lost annually due to lack of proper processing and preservation method. Drying is one of the easiest and oldest methods of food processing which can contribute to reduce that huge losses, combat hunger and promote food security. Drying increase shelf life, reduce weight and volume of food thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. However, drying is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the food material. Modelling of this process is essential to optimize the drying kinetics and improve energy efficiency of the process. Since material properties varies with moisture content, the models should not consider constant materials properties, constant diffusion .The objective of this paper is to develop a multiphysics based mathematical model to simulate coupled heat and mass transfer during convective drying of fruit considering variable material properties. This model can be used predict the temperature and moisture distribution inside the food during drying. Effect of different drying air temperature and drying air velocity on drying kinetics has been demonstrated. The governing equations of heat and mass transfer were solved with Comsol Multiphysics 4.3.