843 resultados para control system analysis
Resumo:
The complex three-dimensional flowfield produced by secondary injection of hot gases in a rocket nozzle for thrust vector control is analyzed by solving unsteady three-dimensional Euler equations with appropriate boundary conditions. Various system performance parameters like secondary jet amplification factor and axial thrust augmentation are deduced by integrating the nozzle wall pressure distributions obtained as part of the flowfield solution and compared with measurements taken in actual static tests. The agreement is good within the practical range of secondary injectant flow rates for thrust vector control applications.
Resumo:
This letter proposes the combination of a passive muffler and an active noise control system for the control of very high‐level noise in ducts used with large industrial fans and similar equipment. The analysis of such a hybrid system is presented making use of electroacoustic analogies and the transfer matrix method. It turns out that a passive muffler upstream of the input microphone can indeed lower the acoustic pressure and, hence, the power requirement of the auxiliary source. The parameter that needs to be optimized (or maximized) for this purpose is a certain velocity ratio that can readily be evaluated in a closed form, making it more or less straightforward to synthesize the configuration of an effective passive muffler to go with the active noise control system.
Resumo:
In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.
Resumo:
National food control systems are a key element in the protection of consumers from unsafe foods and from other fraudulent practices. International guidance is available and provides a framework for enhancing national systems. However, it is recognized that before reaching decisions on the necessary improvements to a national system, an analysis is required of the current state of key elements in the present system. This paper provides such an analysis for the State of Kuwait. The fragmented nature of the food control system is described. Four key elements of the Kuwaiti system are analyzed: the legal framework, the administrative structures, the enforcement activity and the provision of education and training. It is noted that the country has a dependence on imported foods and that the present national food control system is largely based on an historic approach to food sampling at the point of import and is unsustainable. The paper recommends a more coordinated approach to food safety control in Kuwait with a significant increase in the use of risk analysis methods to target enforcement.
Resumo:
In this article, the prevailing official view of supervision as a regulatory instrument is examined as it applies to the social services sector in Sweden. The study is based on a comparison of the views expressed on the design of supervision as a regulatory instrument by two government commissions, the Supervision Commission and the Commission on Supervision within the Social Services (UTIS), and on the positions taken by the Government regarding the definitions of the concept of supervision proposed by these commissions. The view of supervision as a regulatory instrument expressed in these policy documents is analysed with the help of a theoretical framework describing the components, their functions and the governance characteristics of control systems. In the framework separate interrelated characteristics of the components are identified and summarized into two models of control systems. The analysis shows that supervision in the Swedish social services sector can be described in terms of both a disciplinary and non-disciplinary system. By its system theoretical basis and the identification of interrelated characteristics the study contributes to a broadened understanding of the construction and functions of supervision as a regulatory instrument and of how supervision within the Swedish social sector is meant to be designed.
Power performance evaluation of an electric home fan with triac-based automatic speed control system
Resumo:
In order to provide a low cost system of thermal comfort, a common model of home fan, 40 cm diameter size, had its manual four-button control system replaced by an automatic speed control. The new control system has a temperature sensor feeding a microcontroller that, by using an optic coupling, DIAC or TRIAC-based circuit, varies the RMS value of the fan motor input voltage and its speed, according to the room temperature. Over a wide range of velocity, the fan net power and the motor fan input power were measured working under both control system. The temperature of the motor stator and the voltage waveforms were observed too. Measured values analysis showed that the TRIAC-based control system makes the fan motor work at a very low power factor and efficiency values. The worst case is at low velocity range where the higher fan motor stator temperatures were registered. The poor power factor and efficiency and the harmonics signals inserted in the motor input voltage wave by the TRIAC commutation procedure are correlated.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Supervising and controlling the many processes involved in petroleum production is both dangerous and complex. Herein, we propose a multiagent supervisory and control system for handle continuous processes like those in chemical and petroleum industries In its architeture, there are agents responsible for managing data production and analysis, and also the production equipments. Fuzzy controllers were used as control agents. The application of a fuzzy control system to managing an off-shore installation for petroleum production onto a submarine separation process is described. © 2008 IEEE.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A discussion of nonlinear dynamics, demonstrated by the familiar automobile, is followed by the development of a systematic method of analysis of a possibly nonlinear time series using difference equations in the general state-space format. This format allows recursive state-dependent parameter estimation after each observation thereby revealing the dynamics inherent in the system in combination with random external perturbations.^ The one-step ahead prediction errors at each time period, transformed to have constant variance, and the estimated parametric sequences provide the information to (1) formally test whether time series observations y(,t) are some linear function of random errors (ELEM)(,s), for some t and s, or whether the series would more appropriately be described by a nonlinear model such as bilinear, exponential, threshold, etc., (2) formally test whether a statistically significant change has occurred in structure/level either historically or as it occurs, (3) forecast nonlinear system with a new and innovative (but very old numerical) technique utilizing rational functions to extrapolate individual parameters as smooth functions of time which are then combined to obtain the forecast of y and (4) suggest a measure of resilience, i.e. how much perturbation a structure/level can tolerate, whether internal or external to the system, and remain statistically unchanged. Although similar to one-step control, this provides a less rigid way to think about changes affecting social systems.^ Applications consisting of the analysis of some familiar and some simulated series demonstrate the procedure. Empirical results suggest that this state-space or modified augmented Kalman filter may provide interesting ways to identify particular kinds of nonlinearities as they occur in structural change via the state trajectory.^ A computational flow-chart detailing computations and software input and output is provided in the body of the text. IBM Advanced BASIC program listings to accomplish most of the analysis are provided in the appendix. ^