943 resultados para control mechanisms
Resumo:
Doctoral dissertation for Ph.D. degree in Sustainable Chemistry
Resumo:
The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.
Resumo:
The three isotypes of peroxisome proliferator-activated receptors (PPARs), PPARalpha, beta/delta and gamma, are ligand-inducible transcription factors that belong to the nuclear hormone receptor family. PPARs are implicated in the control of inflammatory responses and in energy homeostasis and thus, can be defined as metabolic and anti-inflammatory transcription factors. They exert their anti-inflammatory effects by inhibiting the induction of pro-inflammatory cytokines, adhesion molecules and extracellular matrix proteins or by stimulating the production of anti-inflammatory molecules. Furthermore, PPARs modulate the proliferation, differentiation and survival of immune cells including macrophages, B cells and T cells. This review discusses the molecular mechanisms by which PPARs and their ligands modulate the inflammatory response. In addition, it presents recent developments implicating PPAR specific ligands in potential treatments of inflammation-related diseases, such as atherosclerosis, inflammatory bowel diseases, Parkinson's and Alzheimer's diseases.
Resumo:
We show that transport in the presence of entropic barriers exhibits peculiar characteristics which makes it distinctly different from that occurring through energy barriers. The constrained dynamics yields a scaling regime for the particle current and the diffusion coefficient in terms of the ratio between the work done to the particles and available thermal energy. This interesting property, genuine to the entropic nature of the barriers, can be utilized to effectively control transport through quasi-one-dimensional structures in which irregularities or tortuosity of the boundaries cause entropic effects. The accuracy of the kinetic description has been corroborated by simulations. Applications to different dynamic situations involving entropic barriers are outlined.
Resumo:
We investigated whether attention shifts and eye movement preparation are mediated by shared control mechanisms, as claimed by the premotor theory of attention. ERPs were recorded in three tasks where directional cues presented at the beginning of each trial instructed participants to direct their attention to the cued side without eye movements (Covert task), to prepare an eye movement in the cued direction without attention shifts (Saccade task) or both (Combined task). A peripheral visual Go/Nogo stimulus that was presented 800 ms after cue onset signalled whether responses had to be executed or withheld. Lateralised ERP components triggered during the cue–target interval, which are assumed to reflect preparatory control mechanisms that mediate attentional orienting, were very similar across tasks. They were also present in the Saccade task, which was designed to discourage any concomitant covert attention shifts. These results support the hypothesis that saccade preparation and attentional orienting are implemented by common control structures. There were however systematic differences in the impact of eye movement programming and covert attention on ERPs triggered in response to visual stimuli at cued versus uncued locations. It is concluded that, although the preparatory processes underlying saccade programming and covert attentional orienting may be based on common mechanisms, they nevertheless differ in their spatially specific effects on visual information processing.
Resumo:
Includes bibliography
Resumo:
Subterranean organisms are excellent models for chronobiological studies, yet relatively few taxa have been investigated with this focus. Former results were interpreted as a pattern of regression of circadian locomotor activity rhythms in troglobitic (exclusively subterranean) species. In this paper we report results of experiments with cave fishes showing variable degrees of troglomorphism (reduction of eyes, melanic pigmentation and other specializations related to the hypogean life) submitted to light-dark cycles, preceded and followed by several days in constant darkness. Samples from seven species have been monitored in our laboratory for the detection of significant circadian rhythms in locomotor activity: S. typhlops, an extremely troglomophic species, presented the lowest number of significant components in the circadian range (only one individual out of eight in DD1 and three other fish in LD), all weak (low values of spectral power). Higher incidence of circadian components was observed for P. kronei - only one among six studied catfish without significant circadian rhythms under DD1 and DD2; spectral powers were generally high. Intermediate situations were observed for the remaining species, however all of them presented relatively strong significant rhythms under LD. Residual oscillations (circadian rhythms in DD2) were detected in at least part of the studied individuals of all species but S. typhlops, without a correlation with spectral powers of LD rhythms, i.e., individuals exhibiting residual oscillations were not necessarily those with the strongest LD rhythms. In conclusion, the accumulated evidence for troglobitic fishes strongly supports the hypothesis of external, environmental selection for circadian locomotor rhythms.
Resumo:
The general transcription initiation factor TFIID was originally identified, purified, and characterized with a biochemical assay in which accurate transcription initiation is reconstituted with multiple, chromatographically separable activities. Biochemical analyses have demonstrated that TFIID is a multiprotein complex that directs preinitiation complex assembly on both TATA box-containing and TATA-less promoters, and some TFIID subunits have been shown to be molecular targets for activation domains in DNA-binding regulatory proteins. These findings have most commonly been interpreted to support the view that transcriptional activation by upstream factors is the result of enhanced TFIID recruitment to the core promoter. Recent insights into the architecture and cell-cycle regulation of the multiprotein TFIID complex prompt both a reassessment of the functional role of TFIID in gene activation and a review of some of the less well-appreciated literature on TFIID. We present a speculative model for diverse functional roles of TFIID in the cell, explore the merits of the model in the context of published data, and suggest experimental approaches to resolve unanswered questions. Finally, we point out how the proposed functional roles of TFIID in eukaryotic class II transcription fit into a model for promoter recognition and activation that applies to both eubacteria and eukaryotes.
Resumo:
Recent studies on cleaning behaviour suggest that there are conflicts between cleaners and their clients over what cleaners eat. The diet of cleaners usually contains ectoparasites and some client tissue. It is unclear, however, whether cleaners prefer client tissue over ectoparasites or whether they include client tissue in their diet only when searching for parasites alone is not profitable. To distinguish between these two hypotheses, we trained cleaner fish Labroides dimidiatus to feed from plates and offered them client mucus from the parrotfish Chlorurus sordidus, parasitic monogenean flat-worms, parasitic gnathiid isopods and boiled flour glue as a control. We found that cleaners ate more mucus and monogeneans than gnathiids, with gnathiids eaten slightly more often than the control substance. Because gnathiids are the most abundant ectoparasites, our results suggest a potential for conflict between cleaners and clients over what the cleaner should eat, and support studies emphasizing the importance of partner control in keeping cleaning interactions mutualistic.
Resumo:
During thermo regulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3%) at the commencement of heating, and decreased to 30.7% at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.
Resumo:
Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder. (C) 2001 by the American Pain Society.