987 resultados para continuous production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A marine Pseudomonas sp BTMS-51, immobilized by Ca-alginate gel entrapment was used for the production of extracellular Lglutaminase under repeated batch process and continuous process employing a packed bed reactor (PBR). Immobilized cells could produce an average of 25 U/ml of enzyme over 20 cycles of repeated batch operation and did not show any decline in production upon reuse. The enzyme yield correlated well with the biomass content in the beads. Continuous production of the enzyme in PBR was studied at different substrate concentrations and dilution rates. In general, the volumetric productivity increased with increased dilution rate and substrate concentrations and the substrate conversion efficiency declined. The PBR operated under conditions giving maximal substrate conversion efficiency gave an average yield of 21.07 U/ml and an average productivity of 13.49 U/ml/h. The system could be operated for 120 h without any decline in productivity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Glutamine amidohydrolase (L-glutaminase, EC 3.5.1.2) is a therapeutically and industrially important enzyme. Because it is a potent antileukemic agent and a flavor-enhancing agent used in the food industry, many researchers have focused their attention on L-glutaminase. In this article, we report the continuous production of extracellular L-glutaminase by the marine fungus Beauveria bassiana BTMF S-10 in a packed-bed reactor. Parameters influencing bead production and performance under batch mode were optimized in the order-support (Na-alginate) concentration, concentration of CaCl2 for bead preparation, curing time of beads, spore inoculum concentration, activation time, initial pH of enzyme production medium, temperature of incubation, and retention time. Parameters optimized under batch mode for L-glutaminase production were incorporated into the continuous production studies. Beads with 12 × 108 spores/g of beads were activated in a solution of 1% glutamine in seawater for 15 h, and the activated beads were packed into a packed-bed reactor. Enzyme production medium (pH 9.0) was pumped through the bed, and the effluent was collected from the top of the column. The effect of flow rate of the medium, substrate concentration, aeration, and bed height on continuous production of L-glutaminase was studied. Production was monitored for 5 h in each case, and the volumetric productivity was calculated. Under the optimized conditions for continuous production, the reactor gave a volumetric productivity of 4.048 U/(mL·h), which indicates that continuous production of the enzyme by Ca-alginate-immobilizedspores is well suited for B. bassiana and results in a higher yield of enzyme within a shorter time. The results indicate the scope of utilizing immobilized B. bassiana for continuous commercial production of L-glutaminase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amino acids are well metabolized by Streptomyces clavuligerus during the production of clavulanic acid using glycerol as main carbon and energy source. However, only a few amino acids such as arginine and ornithine are favorable for CA biosynthesis. The aim of this work was to optimize the glycerol:ornithine molar ratio in the feed medium containing only these compounds to maximize CA production in continuous cultivation. A minimum number of experiments were performed by means of a simple two-level full-factorial central composite design to investigate the combined effect of glycerol and ornithine feeding on the CA concentration during the intermittent and continuous process in shake-flasks. Statistical analysis of the experimental data using the response surface methodology showed that a glycerol-to-ornithine molar ratio of approximately 40:1 in the feed medium resulted in the highest CA concentration when fermentation was stopped. Under these optimized conditions, in bench-scale fermentor runs, the CA concentration reached more than double the concentration obtained in shake-flasks runs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous strip metal matrix composite (MMC) casting of 0.3 mm diameter hard-drawn stainless steel (316L) wire in a quasi-eutectic SnPb (64Sn36Pb) matrix was performed by a two-roll melt drag processing (TRMDping) method, with the wire being dragged through a semisolid puddle with a fibre contact time of approximately 0.2 s. A slag weir placed at the nozzle contained two wire guide holes: one located near the upper roll, and the other located between the rolls. A successful continuous composite strip casting with good fibre alignment was achieved by inserting and embedding the wire into the matrix using the guide hole between the rolls. Degeneration of eutectic/dendrite structures led to the formation of globular structures. The occurrence and formation mechanisms of cracks, de-lamination and voids in the matrix were discussed. TRMDping is economically viable and has significant benefits over other MMC fabrication methods. © (2013) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of xylooligosaccharides (XOS) using a packed-bed enzymatic reactor was studied at lab-scale. For this, a xylanase from Aspergillus versicolor was immobilized on different supports. The optimal derivative was xylanase immobilized on glyoxyl-agarose supports. This derivative preserved 85% of its catalytic activity; it was around 700-fold more stable than the soluble enzyme after incubation at 60. °C and was able to be reused for at least 10 1. h-cycles retaining full catalytic activity. About 18% of oligosaccharides with prebiotic interest (X2-X6) were produced by the glyoxyl derivative in batch hydrolysis. The production of xylobiose was 2.5-fold higher using the immobilized preparation than with soluble enzyme and small concentrations of xylose (<0.1%) were observed only at the end of the reaction. The derivative was employed on a packed bed reactor, and the continuous operation with no recirculation reached 56% and 70% of the end of reaction with flow rates of 60. mL/h and 12. mL/h, respectively. In continuous operation with recirculation at a flow rate of 60. mL/h, the reaction was completed after four hours. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study deals with two innovative brewing processes, high gravity batch and complete continuous beer fermentation systems. The results show a significant influence of the variables such as concentration and temperature on the yield factor of the substrate into ethanol and consequently on the productivity of the high gravity batch process. The technological feasibility of continuous production of beer based on yeast immobilization on cheap alternative carriers was also demonstrated. The influence of process parameters on fermentation performance and quality of the obtained beers was studied by sensorial analysis. No significant difference in the degree of acceptance between the obtained products and some traditional market brands was found. (c) 2008 Institute of Chemistry, Slovak Academy of Sciences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The continuous production of beryllium metal by low-temperature fused salt electrolysis into a continuously circulating mercury cathode has been demonstrated. The product is amenable to direct hot pressing or to powder preparation by distilling off the mercury. The production of pure beryllium chloride in good yield by direct chlorination of beryllium oxide has also been demonstrated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study is about the Pseudomonas sp. BTMS-51 isolated from the marine sediments of Cochin Coast. In the present study, it is concluded that marine bacteria are ideal candidates for immobilization using either Ca-alginate entrapment or physical adsorption on to synthetic inert supports and the process of immobilization does not negatively influence them. Thus, Ca-alginate entrapment of the bacteria was found to be well suited for reuse of the biomass and extended operational stability during continuous operation. Adherence of the bacterium to inertsupports was observed to be strong and it imparted minimal stress on the immobilized bacterium and allowed detachment and relocation on the supports which enabled the formation of a dynamic equilibrium maintaining a stable cell loading. This is particularly desirable in the industry for extended operational stability and maintenance of consistently higher outputs. Marine Pseudomonas sp. BTMS-51 is ideal for industrial production of extra cellular L-glutaminase and immobilization on to synthetic inert support such as polyurethane foam could be an efficient technique, employing packed bed reactor for continuous production of the enzyme. Temperature and glutamine concentration had significant effects on enzyme production by cells immobilized on polyurethane foam (PUF).