996 resultados para continued fraction Hermite Laguerre Legendre differential equataion
Resumo:
The continued fraction method for solving differential equations is illustrated using three famous differential equations used in quantum chemistry.
Resumo:
An algorithm for deriving a continued fraction that corresponds to two series expansions simultaneously, when there are zero coefficients in one or both series, is given. It is based on using the Q-D algorithm to derive the corresponding fraction for two related series, and then transforming it into the required continued fraction. Two examples are given. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we evaluate the correlation functions of the spin-1/2 XYZ model for some particular cases by using the Mori continued-fraction formalism. The results are exactly the same as those well-known ones. This removes any doubt about the convergence of the continued fraction recently raised by some authors.
Resumo:
The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
We investigate infinite families of integral quadratic polynomials {fk (X)} k∈N and show that, for a fixed k ∈ N and arbitrary X ∈ N, the period length of the simple continued fraction expansion of √fk (X) is constant. Furthermore, we show that the period lengths of √fk (X) go to infinity with k. For each member of the families involved, we show how to determine, in an easy fashion, the fundamental unit of the underlying quadratic field. We also demonstrate how the simple continued fraction ex- pansion of √fk (X) is related to that of √C, where √fk (X) = ak*X^2 +bk*X + C. This continues work in [1]–[4].
Resumo:
The electronic structure of a bounded intrinsic stacking fault in silicon is calculated. The method used is an LCAO-scheme (Linear Combinations of Atomic Orbitals) taking ten atomic orbitals of s-, p-, and d-type into account. The levels in the band gap are extracted using Lanczos' algorithm and a continued fraction representation of the local density of states. We find occupied states located up to 0.3 eV above the valence band maximum (E(v)). This significantly differs from the result obtained for the ideal infinite fault for which the interface state is located at E(v)+ 0.1 eV.
Resumo:
An LCAO scheme (linear combination of atomic orbitals) taking into account ten atomic orbitals (s-, p-, and d-type) is used to calculate the electronic structure of a vacancy present in the core of the reconstructed 90 degrees partial dislocation in silicon. The levels in the band gap are extracted using Lanczos' algorithm and a continued fraction representation of the local density of states. The three-fold degenerate stale of the ideal vacancy is split into three levels with energies 0.26, 1.1, and 1.9 eV measured from the valence band edge.
Resumo:
In this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.
Resumo:
A strong Stieltjes distribution d psi(t) is called symmetric if it satisfies the propertyt(omega) d psi(beta(2)/t) = -(beta(2)/t)(omega) d psi(t), for t is an element of (a, b) subset of or equal to (0, infinity), 2 omega is an element of Z, and beta > 0.In this article some consequences of symmetry on the moments, the orthogonal L-polynomials and the quadrature formulae associated with the distribution are given. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.
Resumo:
Via an operator continued fraction scheme, we expand Kramers equation in the high friction limit. Then all distribution moments are expressed in terms of the first momemt (particle density). The latter satisfies a generalized Smoluchowsky equation. As an application, we present the nonequilibrium thermodynamics and hydrodynamical picture for the one-dimensional Brownian motion. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We study the phonon density of states of a three dimensional disordered mixed crystal NaCl(x)Br1-x. The phonon structure is obtained by using a cluster method based on a continued fraction expansion of the Green function. The proposed dynamic model includes only short range interactions (first and second neighbors) but supports some qualitative features of the constituents binary alloys.
Resumo:
We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers
Resumo:
A novel class of graphs, here named quasiperiodic, are const ructed via application of the Horizontal Visibility algorithm to the time series generated along the quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions represented by the Far ey tree is inherited by their associated graphs. We are able to establish, via Renormalization Group (RG) theory, the architecture of the quasiperiodic graphs produced by irrational winding numbers with pure periodic continued fraction. And finally, we demonstrate that the RG fixed-point degree distributions are recovered via optimization of a suitably defined graph entropy