845 resultados para constraint solving
Resumo:
Les restriccions reals quantificades (QRC) formen un formalisme matemàtic utilitzat per modelar un gran nombre de problemes físics dins els quals intervenen sistemes d'equacions no-lineals sobre variables reals, algunes de les quals podent ésser quantificades. Els QRCs apareixen en nombrosos contextos, com l'Enginyeria de Control o la Biologia. La resolució de QRCs és un domini de recerca molt actiu dins el qual es proposen dos enfocaments diferents: l'eliminació simbòlica de quantificadors i els mètodes aproximatius. Tot i això, la resolució de problemes de grans dimensions i del cas general, resten encara problemes oberts. Aquesta tesi proposa una nova metodologia aproximativa basada en l'Anàlisi Intervalar Modal, una teoria matemàtica que permet resoldre problemes en els quals intervenen quantificadors lògics sobre variables reals. Finalment, dues aplicacions a l'Enginyeria de Control són presentades. La primera fa referència al problema de detecció de fallades i la segona consisteix en un controlador per a un vaixell a vela.
Resumo:
Solving a complex Constraint Satisfaction Problem (CSP) is a computationally hard task which may require a considerable amount of time. Parallelism has been applied successfully to the job and there are already many applications capable of harnessing the parallel power of modern CPUs to speed up the solving process. Current Graphics Processing Units (GPUs), containing from a few hundred to a few thousand cores, possess a level of parallelism that surpasses that of CPUs and there are much less applications capable of solving CSPs on GPUs, leaving space for further improvement. This paper describes work in progress in the solving of CSPs on GPUs, CPUs and other devices, such as Intel Many Integrated Cores (MICs), in parallel. It presents the gains obtained when applying more devices to solve some problems and the main challenges that must be faced when using devices with as different architectures as CPUs and GPUs, with a greater focus on how to effectively achieve good load balancing between such heterogeneous devices.
Resumo:
Many testing methods are based on program paths. A well-known problem with them is that some paths are infeasible. To decide the feasibility of paths, we may solve a set of constraints. In this paper, we describe constraint-based tools that can be used for this purpose. They accept constraints expressed in a natural form, which may involve variables of different types such as integers, Booleans, reals and fixed-size arrays. The constraint solver is an extension of a Boolean satisfiability checker and it makes use of a linear programming package. The solving algorithm is described, and examples are given to illustrate the use of the tools. For many paths in the testing literature, their feasibility can be decided in a reasonable amount of time.
Resumo:
Studying independence of literals, variables, and substitutions has proven very useful in the context of logic programming (LP). Here we study independence in the broader context of constraint logic programming (CLP). We show that a naive extrapolation of the LP definitions of independence to CLP is unsatisfactory (in fact, wrong) for two reasons. First, because interaction between variables through constraints is more complex than in the case of logic programming. Second, in order to ensure the efUciency of several optimizations not only must independence of the search space be considered, but also an orthogonal issue - "independence of constraint solving." We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow different independence-related optimizations, from parallelism to intelligent backtracking. Sufficient conditions for independence which can be evaluated "a-priori" at run-time are also proposed. Our results suggest that independence, provided a suitable definition is chosen, is even more useful in CLP than in LP.
Resumo:
The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7].
Resumo:
以一阶谓词逻辑为基础,讨论约束满足问题.着重研究一阶逻辑公式可满足性的局部搜索法,并与命题逻辑中的可满足性过程加以比较.以皇后问题和哈密顿回路问题为例,说明基于一阶逻辑的方法能处理较大的问题实例.
Resumo:
With the advancement in network bandwidth and computing power, multimedia systems have become a popular means for information delivery. However, general principles of system testing cannot be directly applied to testing of multimedia systems on account of their stringent temporal and synchronization requirements. In particular, few studies have been made on the stress testing of multimedia systems with respect to their temporal requirements under resource saturation. Stress testing is important because erroneous behavior is most likely to occur under resource saturation. This paper presents an automatable method of test case generation for the stress testing of multimedia systems. It adapts constraint solving techniques to generate test cases that lead to potential resource saturation in a multimedia system. Coverage of the test cases is defined upon the reachability graph of a multimedia system. The proposed stress testing technique is supported by tools and has been successfully applied to a real-life commercial multimedia system. Although our technique focuses on the stress testing of multimedia systems, the underlying issues and concepts are applicable to other types of real-time systems.
Resumo:
针对参数化CAD在约束求解中的应用,提出了基于智能连杆的算法,该算法在扩充几何作图范围、改善算法复杂度方面都有明显的优势.将其同LIM0算法、几何变换方法、C-Tree算法、数值求解方法等方法相互融合,能够组成一套非常完备的几何约束求解框架,来完成对平面和空间几何约束问题的自动求解与图像生成.将该算法应用于智能动态几何软件的设计中,实验显示可以取得令人满意的结果.
Resumo:
Studying independence of goals has proven very useful in the context of logic programming. In particular, it has provided a formal basis for powerful automatic parallelization tools, since independence ensures that two goals may be evaluated in parallel while preserving correctness and eciency. We extend the concept of independence to constraint logic programs (CLP) and prove that it also ensures the correctness and eciency of the parallel evaluation of independent goals. Independence for CLP languages is more complex than for logic programming as search space preservation is necessary but no longer sucient for ensuring correctness and eciency. Two additional issues arise. The rst is that the cost of constraint solving may depend upon the order constraints are encountered. The second is the need to handle dynamic scheduling. We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow dierent optimizations, from parallelism to intelligent backtracking. Sucient conditions for independence which can be evaluated \a priori" at run-time are also proposed. Our study also yields new insights into independence in logic programming languages. In particular, we show that search space preservation is not only a sucient but also a necessary condition for ensuring correctness and eciency of parallel execution.
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user deñned, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples and report on an implementation of our ideas.
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user defined, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples.
Resumo:
To reduce the amount of time needed to solve the most complex Constraint Satisfaction Problems (CSPs) usually multi-core CPUs are used. There are already many applications capable of harnessing the parallel power of these devices to speed up the CSPs solving process. Nowadays, the Graphics Processing Units (GPUs) possess a level of parallelism that surpass the CPUs, containing from a few hundred to a few thousand cores and there are much less applications capable of solving CSPs on GPUs, leaving space for possible improvements. This article describes the work in progress for solving CSPs on GPUs and CPUs and compares results with some state-of-the-art solvers, presenting already some good results on GPUs.
Resumo:
We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.
Resumo:
This paper proposes a technique for solving the multiobjective environmental/economic dispatch problem using the weighted sum and ε-constraint strategies, which transform the problem into a set of single-objective problems. In the first strategy, the objective function is a weighted sum of the environmental and economic objective functions. The second strategy considers one of the objective functions: in this case, the environmental function, as a problem constraint, bounded above by a constant. A specific predictor-corrector primal-dual interior point method which uses the modified log barrier is proposed for solving the set of single-objective problems generated by such strategies. The purpose of the modified barrier approach is to solve the problem with relaxation of its original feasible region, enabling the method to be initialized with unfeasible points. The tests involving the proposed solution technique indicate i) the efficiency of the proposed method with respect to the initialization with unfeasible points, and ii) its ability to find a set of efficient solutions for the multiobjective environmental/economic dispatch problem.