979 resultados para constraint satisfaction problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Lógica Computacional

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embraces areas like resource allocation, scheduling, timetabling or vehicle routing. Constraint programming is a form of declarative programming in the sense that instead of specifying a sequence of steps to execute, it relies on properties of the solutions to be found, which are explicitly defined by constraints. The idea of constraint programming is to solve problems by stating constraints which must be satisfied by the solutions. Constraint programming is based on specialized constraint solvers that take advantage of constraints to search for solutions. The success and popularity of complex problem solving tools can be greatly enhanced by the availability of friendly user interfaces. User interfaces cover two fundamental areas: receiving information from the user and communicating it to the system; and getting information from the system and deliver it to the user. Despite its potential impact, adequate user interfaces are uncommon in constraint programming in general. The main goal of this project is to develop a graphical user interface that allows to, intuitively, represent constraint satisfaction problems. The idea is to visually represent the variables of the problem, their domains and the problem constraints and enable the user to interact with an adequate constraint solver to process the constraints and compute the solutions. Moreover, the graphical interface should be capable of configure the solver’s parameters and present solutions in an appealing interactive way. As a proof of concept, the developed application – GraphicalConstraints – focus on continuous constraint programming, which deals with real valued variables and numerical constraints (equations and inequalities). RealPaver, a state-of-the-art solver in continuous domains, was used in the application. The graphical interface supports all stages of constraint processing, from the design of the constraint network to the presentation of the end feasible space solutions as 2D or 3D boxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solving a complex Constraint Satisfaction Problem (CSP) is a computationally hard task which may require a considerable amount of time. Parallelism has been applied successfully to the job and there are already many applications capable of harnessing the parallel power of modern CPUs to speed up the solving process. Current Graphics Processing Units (GPUs), containing from a few hundred to a few thousand cores, possess a level of parallelism that surpasses that of CPUs and there are much less applications capable of solving CSPs on GPUs, leaving space for further improvement. This paper describes work in progress in the solving of CSPs on GPUs, CPUs and other devices, such as Intel Many Integrated Cores (MICs), in parallel. It presents the gains obtained when applying more devices to solve some problems and the main challenges that must be faced when using devices with as different architectures as CPUs and GPUs, with a greater focus on how to effectively achieve good load balancing between such heterogeneous devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report for the scientific sojourn at the University of Linköping between April to July 2007. Monitoring of the air intake system of an automotive engine is important to meet emission related legislative diagnosis requirements. During the research the problem of fault detection in the air intake system was stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem was solved using Interval-based Consistency Techniques. Interval-based consistency techniques are shown to be particularly efficient for checking the consistency of the Analytical Redundancy Relations (ARRs), dealing with uncertain measurements and parameters, and using experimental data. All experiments were performed on a four-cylinder turbo-charged spark-ignited SAAB engine located in the research laboratory at Vehicular System Group - University of Linköping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.