994 resultados para constant-workload test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to propose an alternative method (MAOD(ALT)) to estimate the maximal accumulated oxygen deficit (MAOD) using only one supramaximal exhaustive test. Nine participants performed the following tests: (a) a maximal incremental exercise test, (b) six submaximal constant workload tests, and (c) a supramaximal constant workload test. Traditional MAOD was determined by calculating the difference between predicted O(2) demand and accumulated O(2) uptake during the supramaximal test. MAOD(ALT) was established by summing the fast component of excess post-exercise oxygen consumption and the O(2) equivalent for energy provided by blood lactate accumulation, both of which were measured during the supramaximal test. There was no significant difference between MAOD (2.82 +/- 0.45 L) and MAOD(ALT) (2.77 +/- 0.37 L) (p = 0.60). The correlation between MAOD and MAOD(ALT) was also high (r = 0.78; p = 0.014). These data indicate that the MAOD(ALT) can be used to estimate the MAOD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigated cycling performance and oxygen uptake (VO2) kinetics between upright and two commonly used recumbent (R) postures, 65ºR and 30ºR. On three occasions, ten young active males performed three bouts of high-intensity constant-load (85% peak workload achieved during a graded test) cycling in one of the three randomly assigned postures (upright, 65ºR or 30ºR). The first bout was performed to fatigue and second and third bouts were limited to 7 min. A subset of seven subjects performed a final constant-load test to failure in the supine posture. Exercise time to failure was not altered when the body inclination was lowered from the upright (13.1 ± 4.5 min) to 65ºR (10.5 ± 2.7 min) and 30ºR (11.5 ± 4.6 min) postures; but it was significantly shorter in the supine posture (5.8 ± 2.1 min) when compared with the three inclined postures. Resulting kinetic parameters from a tri-exponential analysis of breath-by-breath VO2 data during the first 7 min of exercise were also not different between the three inclined postures. However, inert gas rebreathing analysis of cardiac output revealed a greater cardiac output and stroke volume in both recumbent postures compared with the upright posture at 30 s into the exercise. These data suggest that increased cardiac function may counteract the reduction of hydrostatic pressure from upright ~25 mmHg; to 65ºR ~22 mmHg; and 30ºR ~18 mmHg such that perfusion of active muscle presumably remains largely unchanged, and also therefore, VO2 kinetics and performance during high-intensity cycling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O principal objetivo deste estudo foi comparar a intensidade correspondente à máxima fase estável de lactato (MLSS) e a potência crítica (PC) durante o ciclismo em indivíduos bem treinados. Seis ciclistas do sexo masculino (25,5 ± 4,4 anos, 68,8 ± 3,0kg, 173,0 ± 4,0cm) realizaram em diferentes dias os seguintes testes: exercício incremental até a exaustão para a determinação do pico de consumo de oxigênio (VO2pico) e sua respectiva intensidade (IVO2pico); cinco a sete testes de carga constante para a determinação da MLSS e da PC; e um exercício até a exaustão na PC. A MLSS foi considerada com a maior intensidade de exercício onde a concentração de lactato não aumentou mais do que 1mM entre o 10º e o 30º min de exercício. Os valores individuais de potência (95, 100 e 110% IVO2pico) e seu respectivo tempo máximo de exercício (Tlim) foram ajustados a partir do modelo hiperbólico de dois parâmetros para a determinação da PC. Embora altamente correlacionadas (r = 0,99; p = 0,0001), a PC (313,5 ± 32,3W) foi significantemente maior do que a MLLS (287,0 ± 37,8W) (p = 0,0002). A diferença percentual da PC em relação à MLSS foi de 9,5 ± 3,1%. No exercício realizado na PC, embora tenha existido componente lento do VO2 (CL = 400,8 ± 267,0 ml.min-1), o VO2pico não foi alcançado (91,1 ± 3,3 %). Com base nesses resultados pode-se concluir que a PC e a MLSS identificam diferentes intensidades de exercício, mesmo em atletas com elevada aptidão aeróbia. Entretanto, o percentual da diferença entre a MLLS e PC (9%) indica que relação entre esses dois índices pode depender da aptidão aeróbia. Durante o exercício realizado até a exaustão na PC, o CL que é desenvolvido não permite que o VO2pico seja alcançado.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 ± 23.8 W; UC = 180.2 ± 24.5 W) and AT (EC = 274.8 ± 24.9 W; UC = 187.2 ± 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 ± 1.2 mM) and UC (4.9 ± 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to compare the power corresponding to maximal lactate steady state determined through continuous (MLSSC) and intermittent protocol with active recovery (MLSSI). Ten trained male cyclists (25 +/- 4 yr., 72.5 +/- 10.6 kg, 178.5 +/- 4.0 cm), performed the following tests on a cycle ergometer: (1) incremental test until voluntary exhaustion to determine the maximal power (Pmax); (2) two to five constant workload tests to determine MLSSC, and; 3) two to three constant workload tests to determine MLSSI, consisting on eight repetitions of four minutes interspersed by two minutes of recovery at 50% Pmax. The MLSSC (273.2 +/- 21.4 W) was significantly lower than MLSSI (300.5 +/- 23.9 W). With base on these data, it can be verified that the intermittent exercise mode utilized in this study, allows an increase of 10% approximately, in the exercise intensity corresponding to MLSS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw.2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise.3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L).4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main purpose of this study was to analyze the effect of the pedaling cadence (500 × 100 rpm) on the heart rate (HR) and the blood lactate response during incremental and constant workload exercises in active individuals. Nine active male individuals (20.9 ± 2.9 years old; 73.9 ± 6.5 kg; 1.79 ± 0.9 m) were submitted to two incremental tests, and to 6-8 constant workload tests to determine the intensity corresponding to the maximal steady state lactate (MLSSintens) in both cadences. The maximal power (Pmax) attained during the incremental test, and the MLSSintens were significantly lower at 100 rpm (240.9 ± 12.6 W; 148.1 ± 154.W) compared to 50 rpm (263.9 ± 18.6 W; 186.1 ± 21.2 W), respectively. The HRmax did not change between cadences (50 rpm = 191.1 ± 8.8 bpm; 100 rpm = 192.6 ± 9.9 bpm). Regardless the cadence, the HRmax percentage (70, 80, 90, and 100%) determined the same lactate concentrations during the incremental test. However, when the intensity was expressed in Pmax percentage or in absolute power, the lactate and the HR values were always higher at highest cadences. The HR corresponding to MLSSintens was similar between cadences (50 rpm = 162.5 ± 9.1 bpm; 100 rpm = 160.4 ± 9.2 bpm). Based on these results, it can be conclude that regardless the cadence employed (50 × 100 rpm), the use of the HR to individualize the exercise intensity indicates similar blood lactate responses, and this relationship is also kept in the exercise of constant intensity performed at MLSSintens. On the other hand, the use of the Pmax percentages depend on the cadence used, indicating different physiological responses to a same percentage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUÇÃO: A determinação dos domínios de intensidade de exercício tem importantes implicações na prescrição do treino aeróbio e na elaboração de delineamentos experimentais. OBJETIVO: Analisar os efeitos do nível de aptidão aeróbia sobre a amplitude dos domínios de intensidade de exercício durante o ciclismo. MÉTODOS: Doze ciclistas (CIC), 11 corredores (COR) e oito indivíduos não treinados (NT) foram submetidos aos seguintes protocolos em diferentes dias: 1) teste progressivo para determinação do limiar de lactato (LL), consumo máximo de oxigênio (VO2máx) e sua respectiva intensidade (IVO2máx); 2) três testes de carga constante até a exaustão a 95, 100 e 110% IVO2máx para a determinação da potência crítica (PC); 3) testes até a exaustão para determinar a intensidade superior do domínio severo (Isup). As amplitudes dos domínios (moderado < LL; LL > pesado < PC; PC > severo < Isup) foram expressas como percentual da Isup (VO2). RESULTADOS: A amplitude do domínio moderado foi similar entre CIC (52 ± 8%) e COR (47 ± 4%) e significantemente maior no CIC em relação ao NT (41 ± 7%). O domínio pesado foi significantemente menor no CIC (17 ± 6%) em relação ao COR (27 ± 6%) e NT (27 ± 9%). Em relação ao domínio severo não foram encontradas diferenças significantes entre os CIC (31 ± 7%), COR (26 ± 5%) e NT (31 ± 7%). CONCLUSÃO: O domínio pesado de exercício é mais sensível a mudanças determinadas pelo nível de aptidão aeróbia, existindo a necessidade de que se atenda ao princípio da especificidade do movimento, quando se pretende obter um elevado grau de adaptação fisiológica.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUÇÃO:O exercício prévio tem importantes implicações na preparação de atletas antes de competições.OBJETIVO:Analisar o efeito de um exercício prévio realizado no domínio pesado no pico de torque (PTORQUE) medido após exercício severo.MÉTODOS:Participaram deste estudo 14 homens ativos (idade: 26 ± 4 anos, VO2max: 44 ± 6 mLO2.min-1.kg-1) que realizaram sete testes em dias diferentes: a) teste progressivo de rampa para determinação do VO2max e da potência pico; b) quatro testes de carga constante para determinação da potência crítica, capacidade de trabalho anaeróbio e potência correspondente ao tempo de exaustão de 3 min (PTLim3min) e; c) dois testes de carga constante de 2 min na PTLim3min seguidos por um sprint all out de 10 s, a fim de medir o PTORQUE. Este último protocolo foi realizado com (EP) e sem (CON) a realização de um exercício prévio pesado.RESULTADOS:O PTORQUE foi significantemente maior após o EP (101 ± 30 Nm) em relação à condição CON (95 ± 23 Nm). O tempo da resposta médio (TRM) do VO2 foi significantemente menor após o EP (24 ± 7 s) em relação à condição CON (32 ± 10 s). A amplitude primária do VO2 aumentou significantemente após o EP (2598 ± 421 mLO2.min-1) em relação à condição CON (2184 ± 246 mLO2.min-1). O déficit de O2 foi significantemente menor após o exercício prévio (980 ± 432 mLO2) em relação à condição CON (1273 ± 398 mLO2). Houve correlação significante entre a variação do déficit de O2 com a do PTORQUE (r = 0,53) e da variação do TRM com a do PTORQUE (r = 0,53).CONCLUSÃO:Pode-se concluir que o PTORQUE é maior após exercício aeróbio de curta duração precedido do EP. Deste modo, esta estratégia pode ser interessante como preparação para algumas competições esportivas.