11 resultados para connexin40
Resumo:
Upon agonist stimulation, endothelial cells trigger smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). Endothelial cells of mouse aorta are interconnected by gap junctions made of connexin40 (Cx40) and connexin37 (Cx37), allowing the exchange of signaling molecules to coordinate their activity. Wild-type (Cx40(+/+)) and hypertensive Cx40-deficient mice (Cx40(-/-)), which also exhibit a marked decrease of Cx37 in the endothelium, were used to investigate the link between the expression of endothelial connexins (Cx40 and Cx37) and endothelial nitric oxide synthase (eNOS) expression and function in the mouse aorta. With the use of isometric tension measurements in aortic rings precontracted with U-46619, a stable thromboxane A(2) mimetic, we first demonstrate that ACh- and ATP-induced endothelium-dependent relaxations solely depend on NO release in both Cx40(+/+) and Cx40(-/-) mice, but are markedly weaker in Cx40(-/-) mice. Consistently, both basal and ACh- or ATP-induced NO production were decreased in the aorta of Cx40(-/-) mice. Altered relaxations and NO release from aorta of Cx40(-/-) mice were associated with lower expression levels of eNOS in the aortic endothelium of Cx40(-/-) mice. Using immunoprecipitation and in situ ligation assay, we further demonstrate that eNOS, Cx40, and Cx37 tightly interact with each other at intercellular junctions in the aortic endothelium of Cx40(+/+) mice, suggesting that the absence of Cx40 in association with altered Cx37 levels in endothelial cells from Cx40(-/-) mice participate to the decreased levels of eNOS. Altogether, our data suggest that the endothelial connexins may participate in the control of eNOS expression levels and function.
Resumo:
OBJECTIVE: Cx40 is a gap junction protein important for cell-cell communication in the endothelium. Polymorphisms in the promoter region of the human Cx40 gene, -44G>A and +71A>G, were shown to reduce Cx40 transcription by half. As mice with an endothelial-specific deletion of Cx40 are more susceptible to atherosclerosis, this study was designed to discover a correlation between these polymorphisms and atherosclerosis in European populations.¦METHODS AND RESULTS: 803 patients referred to the Geneva University Hospitals for elective coronary angiography were divided according to the number of significantly stenosed vessels (from 0 to 3) and were genotyped for the Cx40 polymorphisms. Genotype distribution in the control group was -44GG/+71AA=59.8%, -44AG/+71AG=35.1% and -44AA/+71GG=5.2%. Surprisingly, this distribution was similar in the CAD group, with -44GG/+71AA=58.5%, -44AG/+71AG=37.6% and -44AA/+71GG=3.8% (p=0.67). Moreover, no significant association between histological carotid plaque composition of culprit lesions and Cx40 polymorphisms could be detected in 583 Dutch patients of the Athero-Express study.¦CONCLUSIONS: Despite a clear antiatherogenic role of Cx40 in mice, our study could not detect an association of Cx40 promoter polymorphisms and CAD in human. Moreover, a correlation with atherosclerotic plaque stability or hypertension could not be demonstrated either. Connexin polymorphisms affecting channel function may be of greater importance for cardiovascular disease than polymorphisms affecting the expression level of the protein.
Resumo:
Renin secretion is regulated by coordinated signaling between the various cells of the juxtaglomerular apparatus. The renin-secreting cells (RSC), which play a major role in the control of blood pressure, are coupled to each other and to endothelial cells by Connexin40 (Cx40)-containing channels. In this study, we show that Cx40 knockout (Cx40-/-) mice, but not their heterozygous littermates, are hypertensive due to the increase in the number of RSC, renin biosynthesis, and plasma renin. Treatment with the angiotensin II receptor AT1 antagonist candesartan or the angiotensin II-converting enzyme inhibitor ramipril reduced the blood pressure of the Cx40-/- mice to the same levels seen in wild-type (WT) mice. The elevated blood pressure of the knockout mice was not affected by clipping one renal artery (2K1C, renin-dependent model of hypertension) or after a high salt diet. Under these conditions, however, Cx40-/- mice showed an altered production and release of renin. The renin mRNA ratio between the clipped and the non-clipped kidney was lower in the knockout than in the WT 2K1C mice. This indicates that the response to a change in blood pressure was altered. The RSC of the Cx40-/- mice did not have a compensatory increase in the levels of either Cx43 or Cx37. Our data show that renin secretion is dependent on Cx40 and suggest the Cx40-/- mice may be a genetic model of renin-dependent hypertension.
Contribution of the gap junction proteins Connexin40 and Connexin43 to the control of blood pressure
Resumo:
Summary Cells in tissues and organs coordinate their activities by communicating with each other through intercellular channels named gap junctions. These channels are conduits between the cytoplasmic compartments of adjacent cells, allowing the exchange of small molecules which may be crucial for hormone secretion. Renin is normally secreted in a regulated manner by specific cells of the juxtaglomerular apparatus located within the renal cortex. Gap junctional communication may be requisite to maintain an accurate functioning in coordination of renin-producing cells, more especially as renin is of paramount importance for the control of blood pressure. Connexin43 (Cx43) and Cx40 form gap junctions that link in vivo the cells of the juxtaglomerular apparatus. Cx43 links the endothelial cells, whereas gap junctions made of Cx40 connect the endothelial cells, the renin secreting cells, as well as the endothelial cells of to the renin-secreting cells of the afferent arteriole. The observation that loss of Cx40 results in chronic hypertension associated with altered vasomotion and signal conduction along arterioles, has lead us to suggest that connexins may contribute to control blood pressure by participating to the integration of various mechanical, osmotic and electrochemical stimuli involved in the control of renin secretion and by mediating the adaptive changes of the vascular wall induced by elevated blood pressure and mechanical stress. We therefore postulated that the absence of Cx40 could have deleterious effects on the coordinated functioning of the renin-containing cells, hence accounting for hypertension. In the first part of my thesis, we reported that Cx40-deficient mice (Cx40) are hypertensive due to increased plasma renin levels and numbers of renin-producing cells. Besides, we demonstrated that prostaglandins and nitric oxide, which are possible mediators in the regulation of renin secretion by the macula densa, exert a critical role in the mechanisms controlling blood pressure ín Cx40 knockout hypertensive mice. In view of previous studies that stated avessel-specifc increase in the expression of Cx43 during renin-dependent hypertension, we hypothesized that Cx43 channels are particularly well-matched to integrate the response of cells constituting the vascular wall to hypertensive conditions. Using transgenic mice in which Cx43 was replaced by Cx32, we revealed that the replacement of Cx43 by Cx32 is associated with decreased expression and secretion of renin and prevent the renin-dependent hypertension which is normally induced in the 2K1C model. To gain insights into the regulation of connexins in two separate tissues exposed to the same fluid pressure, the second part of my thesis work was dedicated to the study of the impact of chronic hypertension and related hypertrophy on the expression of the cardiovascular connexins (Cx40, Cx37, Cx43 and Cx45) in mouse aorta and heart. Our results documented that the expression of connexins is differentially regulated in mouse aorta. according to the models of hypertension. Thus, blood pressure induces mechanical forces that differentially alter the expression of vascular connexins in order to respond to an adaptation of the aortic wall observed under pathological conditions. Altogether these data provide the first evidences that intercellular communication mediated by gap junctions is required for a proper renin secretion from the juxtaglomerular apparatus in order to control blood pressure.
Resumo:
Connexins (Cxs) and endothelial nitric oxide synthase (eNOS) contribute to the adaptation of endothelial and smooth muscle cells to hemodynamic changes. To decipher the in vivo interplay between these proteins, we studied Cx40-null mice, a model of renin-dependent hypertension which displays an altered endothelium-dependent relaxation of the aorta because of reduced eNOS levels. These mice, which were either untreated or subjected to the 1-kidney, 1-clip (1K1C) procedure, a model of volume-dependent hypertension, were compared with control mice submitted to either the 1K1C or the 2-kidney, 1-clip (2K1C) procedure, a model of renin-dependent hypertension. All operated mice became hypertensive and featured hypertrophy and altered Cx expression of the aorta. The combination of volume- and renin-dependent hypertension in Cx40-/- 1K1C mice raised blood pressure and cardiac weight index. Under these conditions, all aortas showed increased levels of Cx40 in endothelial cells and of both Cx37 and Cx45 in smooth muscle cells. In the wild-type 1K1C mice, the interactions between Cx40 and Cx37 with eNOS were enhanced, resulting in increased NO release. The Cx40-eNOS interaction could not be observed in mice lacking Cx40, which also featured decreased levels of eNOS. In these animals, the volume overload caused by the 1K1C procedure resulted in increased phosphorylation of eNOS and in a higher NO release. The findings provide evidence that Cx40 and Cx37 play an in vivo role in the regulation of eNOS.
Resumo:
BACKGROUND: Connexin37 (Cx37) and Cx40 are crucial for endothelial cell-cell communication and homeostasis. Both connexins interact with endothelial nitric oxide synthase (eNOS). The exact contribution of these interactions to the regulation of vascular tone is unknown. RESULTS: Cx37 and Cx40 were expressed in close proximity to eNOS at cell-cell interfaces of mouse aortic endothelial cells. Absence of Cx37 did not affect expression of Cx40 and a 50 % reduction of Cx40 in Cx40(+/-) aortas did not affect the expression of Cx37. However, absence of Cx40 was associated with reduced expression of Cx37. Basal NO release and the sensitivity for ACh were decreased in Cx37(-/-) and Cx40(-/-) aortas but not in Cx40(+/-) aortas. Moreover, ACh-induced release of constricting cyclooxygenase products was present in WT, Cx40(-/-) and Cx40(+/-) aortas but not in Cx37(-/-) aortas. Finally, agonist-induced NO-dependent relaxations and the sensitivity for exogenous NO were not affected by genotype. CONCLUSIONS: Cx37 is more markedly involved in basal NO release, release of cyclooxygenase products and the regulation of the sensitivity for ACh as compared to Cx40.
Resumo:
The presence of multiple connexins was recently demonstrated in platelets, with notable expression of Cx37. Studies with Cx37-deficient mice and connexin inhibitors established roles for hemichannels and gap junctions in platelet function. It was uncertain, however, whether Cx37 functions alone or in collaboration with other family members through heteromeric interactions in regulation of platelet function. Here we report the presence and functions of an additional platelet connexin, Cx40. Inhibition of Cx40 in human platelets or its deletion in mice reduces platelet aggregation, fibrinogen binding, granule secretion and clot retraction. The effects of the Cx37 inhibitor 37,43Gap27 on Cx40-/- mouse platelets and of the Cx40 inhibitor 40Gap27 on Cx37-/- mouse platelets revealed that each connexin is able to function independently. Inhibition or deletion of Cx40 reduces haemostatic responses in mice, indicating the physiological importance of this protein in platelets. We conclude that multiple connexins are involved in regulating platelet function, thereby contributing to haemostasis and thrombosis.
Resumo:
Endothelial dysfunction is the initiating event of atherosclerosis. The expression of connexin40 (Cx40), an endothelial gap junction protein, is decreased during atherogenesis. In the present report, we sought to determine whether Cx40 contributes to the development of the disease.
Resumo:
HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.
Resumo:
Intercellular communication may be regulated by the differential expression of subunit gap junction proteins (connexins) which form channels with differing gating and permeability properties. Endothelial cells express three different connexins (connexin37, connexin40, and connexin43) in vivo. To study the differential regulation of expression and synthesis of connexin37 and connexin43, we used cultured bovine aortic endothelial cells which contain these two connexins in vitro. RNA blots demonstrated discordant expression of these two connexins during growth to confluency. RNA blots and immunoblots showed that levels of these connexins were modulated by treatment of cultures with transforming growth factor-ß1. To examine the potential ability of these connexins to form heteromeric channels (containing different connexins within the same hemi-channel), we stably transfected connexin43-containing normal rat kidney (NRK) cells with connexin37 or connexin40. In the transfected cells, both connexin proteins were abundantly produced and localized in identical distributions as detected by immunofluorescence. Double whole-cell patch-clamp studies showed that co-expressing cells exhibited unitary channel conductances and gating characteristics that could not be explained by hemi-channels formed of either connexin alone. These observations suggest that these connexins can readily mix with connexin43 to form heteromeric channels and that the intercellular communication between cells is determined not only by the properties of individual connexins, but also by the interactions of those connexins to form heteromeric channels with novel properties. Furthermore, modulation of levels of the co-expressed connexins during cell proliferation or by cytokines may alter the relative abundance of different heteromeric combinations.
Resumo:
Myocardial dysfunction and arrhythmias may be induced by congenital heart defects, but also be the result of heart surgery with cardiopulmonary bypass (CPB), potentially caused by differential expression of connexin40 (Cx40) and connexin43 (Cx43). In 16 pediatric patients undergoing corrective heart surgery, connexin mRNA expression was studied in volume overloaded (VO group, n=8) and not overloaded (NO group, n=8) right atrial myocardium, excised before and after CPB. Additionally, in eight of these patients ventricular specimens were investigated. The atrial Cx43 expression decreased during CPB, which was restricted to the VO group (p=0.008). In contrast, atrial Cx40 mRNA did not change during CPB. In ventricular myocardium compared to atrial mRNA levels, Cx40 was lower (p=0.006) and Cx43 higher (p=0.017) expressed, without significant change during CPB. This study revealed a significant influence of CPB and the underlying heart defect on Cx43 expression.