983 resultados para conidia collecting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making bioproducts available to the market requires finding appropriate processes for mass production and formulation of biological agents. This study aimed at evaluating the Bipolaris euphorbiae production in a solid medium (fermentation in solid substrate) and in a biphasic system (growth in a liquid medium followed by growth in a solid medium), as well as determining the processes for collecting and drying conidia, under laboratory conditions. The influence of the incubation period and inoculum quantity were also investigated. The conidia were dried by using an oven (30ºC, 35ºC, 40ºC, 45ºC, 50ºC, 55ºC and 60ºC), and laminar flow, continuous air flow and aseptic chamber at room temperature. Dry conidia were obtained by sieving and grinding in a ball mill, hammer mill or grain grinder. The conidia viability and sporulation efficiency were evaluated in the solid medium and in the biphasic system. For growth period, the best sporulation on solid medium was obtained after 10 days of incubation, reaching 8.3 x 10(7) conidia g-1 of substrate. The biphasic system did not increase the B. euphorbiae sporulation (4.5 x 10(7) conidia g-1 of substrate), after 14 days, and the amount of liquid inoculum used in this system was not an important factor for increasing its production. The continuous air flow and laminar flow preserved the conidial viability (94.6% and 99.1%, respectively), while promoting a great moisture loss (62.6% and 54.0%, respectively). All the grinding processes reduced the conidia germination (86.2%, 10.5% and 12%, respectively), while sieving allowed the collecting of powdered conidia with high viability (94.8%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Males of solitary bees usually spend the night in clusters on small branches of plants, cavities and flowers. The individuals usually return to the same location each evening during their life, exhibiting site fidelity to a particular plant. We report on the sleeping roosts of the males of some oil-collecting bees of the genera Centris, Paratetrapedia, Lanthanomelissa, Monoeca, and Tetrapedia, as well as the host plants. We discuss the role of the male clusters to the associated plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light conditions during mycelial growth are known to influence fungi in many ways. The effect of visible-light exposure during mycelial growth was investigated on conidial tolerance to UVB irradiation and wet heat of Metarhizium robertsii, an insect-pathogenic fungus. Two nutrient media and two light regimens were compared. Conidia were produced on (A) potato dextrose agar plus yeast extract medium (PDAY) (A1) under dark conditions or (A2) under continuous visible light (provided by two fluorescent lamps with intensity 5.4 W m-2). For comparison, the fungus was also produced on (B) minimal medium (MM) under continuous-dark incubation, which is known to produce conidia with increased tolerance to heat and UVB radiation. The UVB tolerances of conidia produced on PDAY under continuous visible light were twofold higher than conidia produced on PDAY medium under dark conditions, and this elevated UVB tolerance was similar to that of conidia produced on MM in the dark. The heat tolerance of conidia produced under continuous light was, however, similar to that of conidia produced on MM or PDAY in the dark. Conidial yield on PDAY medium was equivalent when the fungus was grown either under continuous-dark or under continuous-light conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conidia are responsible for reproduction, dispersal, environmental persistence and host infection of many fungal species. One of the main environmental factors that can kill and/or damage conidia is solar UV radiation. Cyclobutane pyrimidine dimers (CPD) are the major DNA photoproducts induced by UVB. We examined the conidial germination kinetics and the occurrence of CPD in DNA of conidia exposed to different doses of UVB radiation. Conidia of Aspergillus fumigatus, Aspergillus nidulans and Metarhizium acridum were exposed to UVB doses of 0.9, 1.8, 3.6 and 5.4 kJ m-2. CPD were quantified using T4 endonuclease V and alkaline agarose gel electrophoresis. Most of the doses were sublethal for all three species. Exposures to UVB delayed conidial germination and the delays were directly related both to UVB doses and CPD frequencies. The frequencies of dimers also were linear and directly proportional to the UVB doses, but the CPD yields differed among species. We also evaluated the impact of conidial pigmentation on germination and CPD induction on Metarhizium robertsii. The frequency of dimers in an albino mutant was approximately 10 times higher than of its green wild-type parent strain after exposure to a sublethal dose (1.8 kJ m-2) of UVB radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metarhizium spp. is an important worldwide group of entomopathogenic fungi used as an interesting alternative to chemical insecticides in programs of agricultural pest and disease vector control. Metarhizium conidia are important in fungal propagation and also are responsible for host infection. Despite their importance, several aspects of conidial biology, including their proteome, are still unknown. We have established conidial and mycelial proteome reference maps for Metarhizium acridum using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). In all, 1130 +/- 102 and 1200 +/- 97 protein spots were detected in ungerminated conidia and fast-growing mycelia, respectively. Comparison of the two protein-expression profiles reveled that only 35 % of the protein spots were common to both developmental stages. Out of 94 2-DE protein spots (65 from conidia, 25 from mycelia and two common to both) analyzed using mass spectrometry, seven proteins from conidia, 15 from mycelia and one common to both stages were identified. The identified protein spots exclusive to conidia contained sequences similar to known fungal stress-protector proteins (such as heat shock proteins (HSP) and 6-phosphogluconate dehydrogenase) plus the fungal allergen Alt a 7, actin and the enzyme cobalamin-independent methionine synthase. The identified protein spots exclusive to mycelia included proteins involved in several cell housekeeping biological processes. Three proteins (HSP 90, 6-phosphogluconate dehydrogenase and allergen Alt a 7) were present in spots in conidial and mycelial gels, but they differed in their locations on the two gels. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungi, including the entomopathogenic deuteromycete Metarhizium anisopliae, produce a wide diversity of secondary metabolites that either can be secreted or stored in specific developmental structures, e.g., conidia. Some secondary metabolites, such as pigments, polyols and mycosporines, are associated with pathogenicity and/or fungal tolerance to several stress-inducing environmental factors, including temperature and solar radiation extremes. Extracts of M. anisopliae var. anisopliae (strain ESALQ-1037) conidia were purified by chromatographic procedures and the isolated compounds analyzed by (1)H and (13)C nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. LC-MS analyses were carried out to search for mycosporines (the initial targets), but no compounds of this class were detected. A molecule whose natural occurrence was previously undescribed was identified. It consists of betaine conjugated with tyrosine, and the structure was identified as 2-([1-carboxy-2-(4-hydroxyphenyl)ethyl]amino)-N,N,N-trimethyl-2-oxoethanammonium. mannitol was the predominant compound in the alcoholic conidial extract, but no amino acids other than tyrosine were found to be conjugated with betaine in conidia. The fungal tyrosine betaine was detected also in conidial extracts of three other M. anisopliae var. anisopliae (ARSEF 1095, 5626 and 5749) and three M. anisopliae var. acridum isolates (ARSEF 324, 3391 and 7486), but it was not detected in Aspergillus nidulans conidial extract (ATCC 10074). (C) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reproductive biology, reward production and pollination mechanism of Trichocentrum pumilum were studied in a gallery forest in the interior of the State of Sao Paulo, southeast Brazil. The floral visitors and pollination mechanism were recorded, and experimental pollinations were carried out in order to determine the breeding system of this species. Trichocentrum pumilum blooms in spring. Each paniculate inflorescence bears an average of 85 flowers that present a central yellow callus and finger-like trichomes on the lateral lobes of the lip. A lipoidal substance is produced and stored among these trichomes. In the studied population, T. pumilum is exclusively visited and pollinated by two bee species (Tetrapedia diversipes and Lophopedia nigrispinis). Pollinaria are deposited on mouthparts of bees during collection of the lipoidal substance from the lateral lobes of the labellum. Trichocentrum pumilum is self-incompatible and pollinator-limited. Natural fruit set was low (9%, compared to 45% in experimentally cross-pollinated flowers). Potentially viable seed exceed 97% in fruits obtained through cross-pollination and in natural conditions (open pollination).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the mode of exposure of second instar Colorado potato beetles to Beauveria bassiana on conidia acquisition and resulting mortality were investigated in laboratory studies. Larvae sprayed directly with a B, bassiana condial suspension, larvae exposed to B, bassiana-treated foliage, and larvae both sprayed and exposed to treated foliage experienced 76, 34, and 77% mortality, respectively. The total number of conidia and the proportion of germinating conidia were measured over time for four sections of the insect body: the ventral surface of the head (consisting mostly of ventral mouth parts), the ventral abdominal surface, the dorsal abdominal surface, and the legs. From observations at 24 and 36 h posttreatment, mean totals of 161.1 conidia per insect were found on sprayed larvae, 256.1 conidia on larvae exposed only to treated foliage, and 408.3 conidia on larvae both sprayed and exposed to treated foliage, On sprayed larvae, the majority of conidia were found on the dorsal abdominal surface, whereas conidia were predominantly found in the ventral abdominal surface and mouth parts on larvae exposed to treated foliage, Between 24 and 36 h postinoculation the percentage of conidia germinating on sprayed larvae increased slightly from 80 to 84%), On the treated foliage, the percentage of germinated conidia on larvae increased from 35% at 24 h to 50% at 36 h posttreatment, Conidia germination on sprayed larvae on treated foliage was 65% at 24 h and 75% at 36 h posttreatment, It is likely that the gradual acquisition of conidia derived from the continuous exposure to B. bassiana inoculum on the foliar surface was responsible for the increase in germination over time on larvae exposed to treated foliage, The density and germination of conidia were observed 0, 4, 8, 12, 16, 20, and 24 h after being sprayed with or dipped in conidia suspensions or exposing insects to contaminated foliage, Conidia germinated twice as fast on sprayed insects as with any other treatment within the first 12 h, This faster germination may be due to the pressure of the sprayer enhancing conidial lodging on cuticular surfaces. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macroconidia of the sorghum ergot pathogen, Claviceps africana Frederickson, Mantle & de Milliano, survived in dried honeydew on soil for 13-14 weeks in a glasshouse at ambient temperatures, but for less than half that time on seed stored in a shadehouse over summer. Those on seeds stored at 4degreesC, however, survived for over a year (58-62 weeks). During summer, conidia on ergot-infected panicles buried in soil, or on the soil surface, survived for 7.5-12 weeks, whereas over winter the survival times were 4 weeks and 19-27 weeks, respectively. Macroconidia on infected panicles held above the soil surface survived for >38 weeks (8 calendar months) over winter, suggesting that they may play a role in the perennation of C. africana in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of temperature, time, and moisture on the germination of macroconidia and secondary conidia of Australian isolates of Claviceps africana were studied in vitro. The optimum temperature for germination of both macroconidia and secondary conidia of C. africana was 20degreesC. Although germination of macroconidia ceased near 31degreesC, approximately 30% of secondary conidia germinated at 37degreesC after 48 and 72 h of incubation. Sorghum flower extract agar stimulated macroconidium and secondary conidium germination, irrespective of temperature. Germination of macroconidia and secondary conidia on water agar started after 4 h of incubation at 20degreesC, reaching a maximum after 16-24 h and 14 h, respectively. Maximum germination of both macroconidia and secondary conidia was at greater than or equal to-5 bars at 20degreesC. Germination of secondary conidia ceased at -35 bars, whereas macroconidia germinated at water potentials as low as -55 bars at 20degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.