995 resultados para conditional beta pricing
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. the conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. the inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the period 1976-1992. We also test a conditional APT modeI by using the difference between the 3-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from individual securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be important for the appropriate pricing of the portfolios.
Resumo:
Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.
Resumo:
This paper proposes a two-step procedure to back out the conditional alpha of a given stock using high-frequency data. We rst estimate the realized factor loadings of the stocks, and then retrieve their conditional alphas by estimating the conditional expectation of their risk-adjusted returns. We start with the underlying continuous-time stochastic process that governs the dynamics of every stock price and then derive the conditions under which we may consistently estimate the daily factor loadings and the resulting conditional alphas. We also contribute empiri-cally to the conditional CAPM literature by examining the main drivers of the conditional alphas of the S&P 100 index constituents from January 2001 to December 2008. In addition, to con rm whether these conditional alphas indeed relate to pricing errors, we assess the performance of both cross-sectional and time-series momentum strategies based on the conditional alpha estimates. The ndings are very promising in that these strategies not only seem to perform pretty well both in absolute and relative terms, but also exhibit virtually no systematic exposure to the usual risk factors (namely, market, size, value and momentum portfolios).
Resumo:
This paper assesses the importance of fund flows in the performance evaluation of Australian international equity funds. Two concepts of fund flows are considered in the context of a conditional asset pricing model. The first measure is net fund flow relative to fund size and the second is net fund flow relative to sector flows. We find that incorporating a fund flow measure relative to the sector flow results in a reduction of measured perverse market timing. The results indicate that, at the individual fund level, cash flows are relevant in assessing management outcomes.
Resumo:
Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.
Resumo:
With the rapid globalization and integration of world capital markets, more and more stocks are listed in multiple markets. With multi-listed stocks, the traditional measurement of systematic risk, the domestic beta, is not appropriate since it only contain information from one market. ^ Prakash et al. (1993) developed a technique, the global beta, to capture information from multiple markets wherein the stocks are listed. In this study, the global betas are obtained as well as domestic betas for 704 multi-listed stocks from 59 world equity markets. Welch tests show that domestic betas are not equal across markets, therefore, global beta is more appropriate in a global investment setting. ^ The traditional Capital Asset Pricing Models (CAPM) is also tested with regards to both domestic beta and global beta. The results generally support the positive relationship between stocks returns and global beta while tend to reject this relationship between stocks returns and domestic beta. Further tests of International CAPM with domestic beta and global beta strengthen the conclusion.^
Resumo:
This paper applies Hierarchical Bayesian Models to price farm-level yield insurance contracts. This methodology considers the temporal effect, the spatial dependence and spatio-temporal models. One of the major advantages of this framework is that an estimate of the premium rate is obtained directly from the posterior distribution. These methods were applied to a farm-level data set of soybean in the State of the Parana (Brazil), for the period between 1994 and 2003. The model selection was based on a posterior predictive criterion. This study improves considerably the estimation of the fair premium rates considering the small number of observations.
Resumo:
This article considers alternative methods to calculate the fair premium rate of crop insurance contracts based on county yields. The premium rate was calculated using parametric and nonparametric approaches to estimate the conditional agricultural yield density. These methods were applied to a data set of county yield provided by the Statistical and Geography Brazilian Institute (IBGE), for the period of 1990 through 2002, for soybean, corn and wheat, in the State of Paran. In this article, we propose methodological alternatives to pricing crop insurance contracts resulting in more accurate premium rates in a situation of limited data.
Resumo:
Tese de Doutoramento em Ciências Empresariais.
Resumo:
Notch proteins influence cell-fate decisions in many developmental systems. Gain-of-function studies have suggested a crucial role for Notch1 signaling at several stages during lymphocyte development, including the B/T, alphabeta/gammadelta and CD4/CD8 lineage choices. Here, we critically re-evaluate these conclusions in the light of recent studies that describe inducible and tissue-specific targeting of the Notch1 gene.
Resumo:
In this paper, we attempt to give a theoretical underpinning to the well established empirical stylized fact that asset returns in general and the spot FOREX returns in particular display predictable volatility characteristics. Adopting Moore and Roche s habit persistence version of Lucas model we nd that both the innovation in the spot FOREX return and the FOREX return itself follow "ARCH" style processes. Using the impulse response functions (IRFs) we show that the baseline simulated FOREX series has "ARCH" properties in the quarterly frequency that match well the "ARCH" properties of the empirical monthly estimations in that when we scale the x-axis to synchronize the monthly and quarterly responses we find similar impulse responses to one unit shock in variance. The IRFs for the ARCH processes we estimate "look the same" with an approximately monotonic decreasing fashion. The Lucas two-country monetary model with habit can generate realistic conditional volatility in spot FOREX return.
Resumo:
This thesis focuses on theoretical asset pricing models and their empirical applications. I aim to investigate the following noteworthy problems: i) if the relationship between asset prices and investors' propensities to gamble and to fear disaster is time varying, ii) if the conflicting evidence for the firm and market level skewness can be explained by downside risk, Hi) if costly learning drives liquidity risk. Moreover, empirical tests support the above assumptions and provide novel findings in asset pricing, investment decisions, and firms' funding liquidity. The first chapter considers a partial equilibrium model where investors have heterogeneous propensities to gamble and fear disaster. Skewness preference represents the desire to gamble, while kurtosis aversion represents fear of extreme returns. Using US data from 1988 to 2012, my model demonstrates that in bad times, risk aversion is higher, more people fear disaster, and fewer people gamble, in contrast to good times. This leads to a new empirical finding: gambling preference has a greater impact on asset prices during market downturns than during booms. The second chapter consists of two essays. The first essay introduces a foramula based on conditional CAPM for decomposing the market skewness. We find that the major market upward and downward movements can be well preadicted by the asymmetric comovement of betas, which is characterized by an indicator called "Systematic Downside Risk" (SDR). We find that SDR can efafectively forecast future stock market movements and we obtain out-of-sample R-squares (compared with a strategy using historical mean) of more than 2.27% with monthly data. The second essay reconciles a well-known empirical fact: aggregating positively skewed firm returns leads to negatively skewed market return. We reconcile this fact through firms' greater response to negative maraket news than positive market news. We also propose several market return predictors, such as downside idiosyncratic skewness. The third chapter studies the funding liquidity risk based on a general equialibrium model which features two agents: one entrepreneur and one external investor. Only the investor needs to acquire information to estimate the unobservable fundamentals driving the economic outputs. The novelty is that information acquisition is more costly in bad times than in good times, i.e. counter-cyclical information cost, as supported by previous empirical evidence. Later we show that liquidity risks are principally driven by costly learning. Résumé Cette thèse présente des modèles théoriques dévaluation des actifs et leurs applications empiriques. Mon objectif est d'étudier les problèmes suivants: la relation entre l'évaluation des actifs et les tendances des investisseurs à parier et à crainadre le désastre varie selon le temps ; les indications contraires pour l'entreprise et l'asymétrie des niveaux de marché peuvent être expliquées par les risques de perte en cas de baisse; l'apprentissage coûteux augmente le risque de liquidité. En outre, des tests empiriques confirment les suppositions ci-dessus et fournissent de nouvelles découvertes en ce qui concerne l'évaluation des actifs, les décisions relatives aux investissements et la liquidité de financement des entreprises. Le premier chapitre examine un modèle d'équilibre où les investisseurs ont des tendances hétérogènes à parier et à craindre le désastre. La préférence asymétrique représente le désir de parier, alors que le kurtosis d'aversion représente la crainte du désastre. En utilisant les données des Etats-Unis de 1988 à 2012, mon modèle démontre que dans les mauvaises périodes, l'aversion du risque est plus grande, plus de gens craignent le désastre et moins de gens parient, conatrairement aux bonnes périodes. Ceci mène à une nouvelle découverte empirique: la préférence relative au pari a un plus grand impact sur les évaluations des actifs durant les ralentissements de marché que durant les booms économiques. Exploitant uniquement cette relation générera un revenu excédentaire annuel de 7,74% qui n'est pas expliqué par les modèles factoriels populaires. Le second chapitre comprend deux essais. Le premier essai introduit une foramule base sur le CAPM conditionnel pour décomposer l'asymétrie du marché. Nous avons découvert que les mouvements de hausses et de baisses majeures du marché peuvent être prédits par les mouvements communs des bêtas. Un inadicateur appelé Systematic Downside Risk, SDR (risque de ralentissement systématique) est créé pour caractériser cette asymétrie dans les mouvements communs des bêtas. Nous avons découvert que le risque de ralentissement systématique peut prévoir les prochains mouvements des marchés boursiers de manière efficace, et nous obtenons des carrés R hors échantillon (comparés avec une stratégie utilisant des moyens historiques) de plus de 2,272% avec des données mensuelles. Un investisseur qui évalue le marché en utilisant le risque de ralentissement systématique aurait obtenu une forte hausse du ratio de 0,206. Le second essai fait cadrer un fait empirique bien connu dans l'asymétrie des niveaux de march et d'entreprise, le total des revenus des entreprises positiveament asymétriques conduit à un revenu de marché négativement asymétrique. Nous décomposons l'asymétrie des revenus du marché au niveau de l'entreprise et faisons cadrer ce fait par une plus grande réaction des entreprises aux nouvelles négatives du marché qu'aux nouvelles positives du marché. Cette décomposition révélé plusieurs variables de revenus de marché efficaces tels que l'asymétrie caractéristique pondérée par la volatilité ainsi que l'asymétrie caractéristique de ralentissement. Le troisième chapitre fournit une nouvelle base théorique pour les problèmes de liquidité qui varient selon le temps au sein d'un environnement de marché incomplet. Nous proposons un modèle d'équilibre général avec deux agents: un entrepreneur et un investisseur externe. Seul l'investisseur a besoin de connaitre le véritable état de l'entreprise, par conséquent, les informations de paiement coutent de l'argent. La nouveauté est que l'acquisition de l'information coute plus cher durant les mauvaises périodes que durant les bonnes périodes, comme cela a été confirmé par de précédentes expériences. Lorsque la récession comamence, l'apprentissage coûteux fait augmenter les primes de liquidité causant un problème d'évaporation de liquidité, comme cela a été aussi confirmé par de précédentes expériences.