851 resultados para computing technologies
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
Low resources in many African locations do not allow many African scientists and physicians to access the latest advances in technology. This deficiency hinders the daily life of African professionals that often cannot afford, for instance, the cost of internet fees or software licenses. The AFRICA BUILD project, funded by the European Commission and formed by four European and four African institutions, intends to provide advanced computational tools to African institutions in order to solve current technological limitations. In the context of AFRICA BUILD we have carried out, a series of experiments to test the feasibility of using Cloud Computing technologies in two different locations in Africa: Egypt and Burundi. The project aims to create a virtual platform to provide access to a wide range of biomedical informatics and learning resources to professionals and researchers in Africa.
Resumo:
Salutogenesis is now accepted as a part of the contemporary model of disease: an individual is not only affected by pathogenic factors in the environment, but those that promote well-being or salutogenesis. Given that "environment" extends to include the built environment, promotion of salutogenesis has become part of the architectural brief for contemporary healthcare facilities, drawing on an increasing evidence-base. Salutogenesis is inextricably linked with the notion of person-environment "fit". MyRoom is a proposal for an integrated architectural and pervasive computing model, which enhances psychosocial congruence by using real-time data indicative of the individual's physical status to enable the environment of his/her room (colour, light, temperature) to adapt on an on-going basis in response to bio-signals. This work is part of the PRTLI-IV funded programme NEMBES, investigating the use of embedded technologies in the built environment. Different care contexts require variations in the model, and iterative prototyping investigating use in different contexts will progressively lead to the development of a fully-integrated adaptive salutogenic single-room prototype.
Resumo:
Computers have invaded our offices, our homes, cars and coffee-pots; they have become ubiquitous. However, the advance of computing technologies is associated with an increasing lack of “visibility” of the underlying software and hardware technologies. While we use and accept the computer, we neither know its history nor functionality. In this paper, we argue that this is not a healthy situation. Also, recruitment onto UK Computing degree courses is steadily falling; these courses are appearing less attractive to school-leavers. This may be associated with the increasing ubiquity. In this paper we reflect on an MSc. module of instruction, Concepts and Philosophy of Computing, and a BSc. module Computer Games Development developed at the University of Worcester which address these issues. We propose that the elements of these modules form a necessary part of the education of all citizens, and we suggest how this may be realized. We also suggest how to re-enthuse our youth about computing as a discipline and halt the drop in recruitment.
Resumo:
Computers have invaded our offices, our homes, cars and coffee-pots; they have become ubiquitous. However, the advance of computing technologies is associated with an increasing lack of “visibility” of the underlying software and hardware technologies. While we use and accept the computer, we neither know its history nor functionality. In this paper, we argue that this is not a healthy situation. Also, recruitment onto UK Computing degree courses is steadily falling; these courses are appearing less attractive to school-leavers. This may be associated with the increasing ubiquity. In this paper we reflect on an MSc. module of instruction, Concepts and Philosophy of Computing, and a BSc. module Computer Games Development developed at the University of Worcester which address these issues. We propose that the elements of these modules form a necessary part of the education of all citizens, and we suggest how this may be realized. We also suggest how to re-enthuse our youth about computing as a discipline and halt the drop in recruitment.
Resumo:
Problem This dissertation presents a literature-based framework for communication in science (with the elements partners, purposes, message, and channel), which it then applies in and amends through an empirical study of how geoscientists use two social computing technologies (SCTs), blogging and Twitter (both general use and tweeting from conferences). How are these technologies used and what value do scientists derive from them? Method The empirical part used a two-pronged qualitative study, using (1) purposive samples of ~400 blog posts and ~1000 tweets and (2) a purposive sample of 8 geoscientist interviews. Blog posts, tweets, and interviews were coded using the framework, adding new codes as needed. The results were aggregated into 8 geoscientist case studies, and general patterns were derived through cross-case analysis. Results A detailed picture of how geoscientists use blogs and twitter emerged, including a number of new functions not served by traditional channels. Some highlights: Geoscientists use SCTs for communication among themselves as well as with the public. Blogs serve persuasion and personal knowledge management; Twitter often amplifies the signal of traditional communications such as journal articles. Blogs include tutorials for peers, reviews of basic science concepts, and book reviews. Twitter includes links to readings, requests for assistance, and discussions of politics and religion. Twitter at conferences provides live coverage of sessions. Conclusions Both blogs and Twitter are routine parts of scientists' communication toolbox, blogs for in-depth, well-prepared essays, Twitter for faster and broader interactions. Both have important roles in supporting community building, mentoring, and learning and teaching. The Framework of Communication in Science was a useful tool in studying these two SCTs in this domain. The results should encourage science administrators to facilitate SCT use of scientists in their organization and information providers to search SCT documents as an important source of information.
Resumo:
This article will address the main technical aspects that facilitate the use and growth of computer technology in the cloud, which go hand in hand with the emergence of more and better services on the Internet and technological development of the broadband. Finally, we know what is the impact that the cloud computing technologies in the automation of information units.
Resumo:
A densely built environment is a complex system of infrastructure, nature, and people closely interconnected and interacting. Vehicles, public transport, weather action, and sports activities constitute a manifold set of excitation and degradation sources for civil structures. In this context, operators should consider different factors in a holistic approach for assessing the structural health state. Vibration-based structural health monitoring (SHM) has demonstrated great potential as a decision-supporting tool to schedule maintenance interventions. However, most excitation sources are considered an issue for practical SHM applications since traditional methods are typically based on strict assumptions on input stationarity. Last-generation low-cost sensors present limitations related to a modest sensitivity and high noise floor compared to traditional instrumentation. If these devices are used for SHM in urban scenarios, short vibration recordings collected during high-intensity events and vehicle passage may be the only available datasets with a sufficient signal-to-noise ratio. While researchers have spent efforts to mitigate the effects of short-term phenomena in vibration-based SHM, the ultimate goal of this thesis is to exploit them and obtain valuable information on the structural health state. First, this thesis proposes strategies and algorithms for smart sensors operating individually or in a distributed computing framework to identify damage-sensitive features based on instantaneous modal parameters and influence lines. Ordinary traffic and people activities become essential sources of excitation, while human-powered vehicles, instrumented with smartphones, take the role of roving sensors in crowdsourced monitoring strategies. The technical and computational apparatus is optimized using in-memory computing technologies. Moreover, identifying additional local features can be particularly useful to support the damage assessment of complex structures. Thereby, smart coatings are studied to enable the self-sensing properties of ordinary structural elements. In this context, a machine-learning-aided tomography method is proposed to interpret the data provided by a nanocomposite paint interrogated electrically.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
The growth of the Irish economy in recent years is resulting in shortages of skilled employees in some sectors such as information and computing technologies, construction professionals and across a broad range of medical, health and social care professions (including Medical Practitioners, nurses, speech and language therapists, occupational therapists, radiographers, physiotherapists, social workers) Download document here
Resumo:
El propósito de este documento es adentrarnos en los nuevos modelos de negocio basados en las tecnologías Cloud Computing con el objetivo de consolidar nuevos conocimientos complementarios a los estudios de ingeniería informática. Se quiere realizar un estudio de productos open-source basados en un modelo de servicio como infraestructura (IaaS), y, implementarlos desde la vertiente más práctica.
Resumo:
This paper presents the design and analysis of a novel machine family of Siotiess Permanent Magnet Brushless DC motors (PMBLDC) for precise positioning applications of spacecrafts. Initial design, selection of major parameters and air gap magnetic flux density are estimated using the analytical model of the machine. The proportion of the halbach array in the machine was optimized using FE to obtain near trapezoidal flux pattern. The novel machine topology is found to deliver high torque density, high efficiency, zero cogging torque, better positional stability, high torque to inertia ratio and zero magnetic stiction suiting space requirements. The machine provides uniform air gap flux density along the radius thus avoiding circulating currents in stator conductors and hence reducing torque ripple
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
In this paper, an improved technique for evolving wavelet coefficients refined for compression and reconstruction of fingerprint images is presented. The FBI fingerprint compression standard [1, 2] uses the cdf 9/7 wavelet filter coefficients. Lifting scheme is an efficient way to represent classical wavelets with fewer filter coefficients [3, 4]. Here Genetic algorithm (GA) is used to evolve better lifting filter coefficients for cdf 9/7 wavelet to compress and reconstruct fingerprint images with better quality. Since the lifting filter coefficients are few in numbers compared to the corresponding classical wavelet filter coefficients, they are evolved at a faster rate using GA. A better reconstructed image quality in terms of Peak-Signal-to-Noise-Ratio (PSNR) is achieved with the best lifting filter coefficients evolved for a compression ratio 16:1. These evolved coefficients perform well for other compression ratios also.
Resumo:
Las tecnologías de la información han empezado a ser un factor importante a tener en cuenta en cada uno de los procesos que se llevan a cabo en la cadena de suministro. Su implementación y correcto uso otorgan a las empresas ventajas que favorecen el desempeño operacional a lo largo de la cadena. El desarrollo y aplicación de software han contribuido a la integración de los diferentes miembros de la cadena, de tal forma que desde los proveedores hasta el cliente final, perciben beneficios en las variables de desempeño operacional y nivel de satisfacción respectivamente. Por otra parte es importante considerar que su implementación no siempre presenta resultados positivos, por el contrario dicho proceso de implementación puede verse afectado seriamente por barreras que impiden maximizar los beneficios que otorgan las TIC.