845 resultados para computing systems design
Resumo:
An important issue in the design of a distributed computing system (DCS) is the development of a suitable protocol. This paper presents an effort to systematize the protocol design procedure for a DCS. Protocol design and development can be divided into six phases: specification of the DCS, specification of protocol requirements, protocol design, specification and validation of the designed protocol, performance evaluation, and hardware/software implementation. This paper describes techniques for the second and third phases, while the first phase has been considered by the authors in their earlier work. Matrix and set theoretic based approaches are used for specification of a DCS and for specification of the protocol requirements. These two formal specification techniques form the basis of the development of a simple and straightforward procedure for the design of the protocol. The applicability of the above design procedure has been illustrated by considering an example of a computing system encountered on board a spacecraft. A Petri-net based approach has been adopted to model the protocol. The methodology developed in this paper can be used in other DCS applications.
Resumo:
In this paper, we present a decentralized dynamic load scheduling/balancing algorithm called ELISA (Estimated Load Information Scheduling Algorithm) for general purpose distributed computing systems. ELISA uses estimated state information based upon periodic exchange of exact state information between neighbouring nodes to perform load scheduling. The primary objective of the algorithm is to cut down on the communication and load transfer overheads by minimizing the frequency of status exchange and by restricting the load transfer and status exchange within the buddy set of a processor. It is shown that the resulting algorithm performs almost as well as a perfect information algorithm and is superior to other load balancing schemes based on the random sharing and Ni-Hwang algorithms. A sensitivity analysis to study the effect of various design parameters on the effectiveness of load balancing is also carried out. Finally, the algorithm's performance is tested on large dimensional hypercubes in the presence of time-varying load arrival process and is shown to perform well in comparison to other algorithms. This makes ELISA a viable and implementable load balancing algorithm for use in general purpose distributed computing systems.
Resumo:
A novel cost-effective and low-latency wormhole router for packet-switched NoC designs, tailored for FPGA, is presented. This has been designed to be scalable at system level to fully exploit the characteristics and constraints of FPGA based systems, rather than custom ASIC technology. A key feature is that it achieves a low packet propagation latency of only two cycles per hop including both router pipeline delay and link traversal delay - a significant enhancement over existing FPGA designs - whilst being very competitive in terms of performance and hardware complexity. It can also be configured in various network topologies including 1-D, 2-D, and 3-D. Detailed design-space exploration has been carried for a range of scaling parameters, with the results of various design trade-offs being presented and discussed. By taking advantage of abundant buildin reconfigurable logic and routing resources, we have been able to create a new scalable on-chip FPGA based router that exhibits high dimensionality and connectivity. The architecture proposed can be easily migrated across many FPGA families to provide flexible, robust and cost-effective NoC solutions suitable for the implementation of high-performance FPGA computing systems. © 2011 IEEE.
Resumo:
Managing the great complexity of enterprise system, due to entities numbers, decision and process varieties involved to be controlled results in a very hard task because deals with the integration of its operations and its information systems. Moreover, the enterprises find themselves in a constant changing process, reacting in a dynamic and competitive environment where their business processes are constantly altered. The transformation of business processes into models allows to analyze and redefine them. Through computing tools usage it is possible to minimize the cost and risks of an enterprise integration design. This article claims for the necessity of modeling the processes in order to define more precisely the enterprise business requirements and the adequate usage of the modeling methodologies. Following these patterns, the paper concerns the process modeling relative to the domain of demand forecasting as a practical example. The domain of demand forecasting was built based on a theoretical review. The resulting models considered as reference model are transformed into information systems and have the aim to introduce a generic solution and be start point of better practical forecasting. The proposal is to promote the adequacy of the information system to the real needs of an enterprise in order to enable it to obtain and accompany better results, minimizing design errors, time, money and effort. The enterprise processes modeling are obtained with the usage of CIMOSA language and to the support information system it was used the UML language.
Resumo:
Adaptability for distributed object-oriented enterprise frameworks in multimedia technology is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing systems. In this paper, we propose a Metalevel Component-Based Framework which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our approach of combining a meta-architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed multimedia applications. The proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address issues in the domain of distributed computing and they can be woven together to shape the framework in future. © 2011 Springer Science+Business Media B.V.
Resumo:
Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^
Resumo:
This paper describes a series of design games, specifically aimed at exploring shifts in human agency in order to inform the design of context-aware applications. The games focused on understanding information handling issues in dental practice with participants from a university dental school playing an active role in the activities. Participatory design activities help participants to reveal potential implicit technical resources that can be presented explicitly in technologies in order to assist humans in managing their interactions with and amidst technical systems gracefully.
Resumo:
This paper investigates the High Lift System (HLS) application of complex aerodynamic design problem using Particle Swarm Optimisation (PSO) coupled to Game strategies. Two types of optimization methods are used; the first method is a standard PSO based on Pareto dominance and the second method hybridises PSO with a well-known Nash Game strategies named Hybrid-PSO. These optimization techniques are coupled to a pre/post processor GiD providing unstructured meshes during the optimisation procedure and a transonic analysis software PUMI. The computational efficiency and quality design obtained by PSO and Hybrid-PSO are compared. The numerical results for the multi-objective HLS design optimisation clearly shows the benefits of hybridising a PSO with the Nash game and makes promising the above methodology for solving other more complex multi-physics optimisation problems in Aeronautics.
Resumo:
The final shape of the "Internet of Things" ubiquitous computing promises relies on a cybernetic system of inputs (in the form of sensory information), computation or decision making (based on the prefiguration of rules, contexts, and user-generated or defined metadata), and outputs (associated action from ubiquitous computing devices). My interest in this paper lies in the computational intelligences that suture these positions together, and how positioning these intelligences as autonomous agents extends the dialogue between human-users and ubiquitous computing technology. Drawing specifically on the scenarios surrounding the employment of ubiquitous computing within aged care, I argue that agency is something that cannot be traded without serious consideration of the associated ethics.
Resumo:
Air conditioning systems have become an integral part of many modern buildings. Proper design and operation of air conditioning systems have significant impact not only on the energy use and greenhouse gas emissions from the buildings, but also on the thermal comfort and productivity of the occupants. In this paper, the purpose and need of installing air conditioning systems is first introduced. The methods used for the classification of air conditioning systems are then presented. This is followed by a discussion on the pros and cons of each type of the air conditioning systems, including both common and new air conditioning technologies. The procedures used to design air conditioning systems are also outlined, and the implications of air conditioning systems, including design, selection, operation and maintenance, on building energy efficiency is also discussed.
Resumo:
Design Science is the process of solving ‘wicked problems’ through designing, developing, instantiating, and evaluating novel solutions (Hevner, March, Park and Ram, 2004). Wicked problems are described as agent finitude in combination with problem complexity and normative constraint (Farrell and Hooker, 2013). In Information Systems Design Science, determining that problems are ‘wicked’ differentiates Design Science research from Solutions Engineering (Winter, 2008) and is a necessary part of proving the relevance to Information Systems Design Science research (Hevner, 2007; Iivari, 2007). Problem complexity is characterised as many problem components with nested, dependent and co-dependent relationships interacting through multiple feedback and feed-forward loops. Farrell and Hooker (2013) specifically state for wicked problems “it will often be impossible to disentangle the consequences of specific actions from those of other co-occurring interactions”. This paper discusses the application of an Enterprise Information Architecture modelling technique to disentangle the wicked problem complexity for one case. It proposes that such a modelling technique can be applied to other wicked problems and can lay the foundations for proving relevancy to DSR, provide solution pathways for artefact development, and aid to substantiate those elements required to produce Design Theory.
Resumo:
Pumping systems are widely used in many applications, including municipal water/wastewater services, domestic, commercial and agricultural services, and industrial processes. They are a very significant energy user and consume nearly 20% of the world’s electrical energy demand. Therefore, improving the energy efficiency of pumping systems can provide great benefits in terms of energy, environment, and cost reduction. In this entry, an overview of pump classification with pros and cons of each type of pump is presented. The procedures used to design pumping systems are also outlined. This is then followed by a discussion on the opportunities for improving the energy efficiency of pumping systems during every stage of design, selection, operation, and maintenance.
Resumo:
Simultaneous consideration of both performance and reliability issues is important in the choice of computer architectures for real-time aerospace applications. One of the requirements for such a fault-tolerant computer system is the characteristic of graceful degradation. A shared and replicated resources computing system represents such an architecture. In this paper, a combinatorial model is used for the evaluation of the instruction execution rate of a degradable, replicated resources computing system such as a modular multiprocessor system. Next, a method is presented to evaluate the computation reliability of such a system utilizing a reliability graph model and the instruction execution rate. Finally, this computation reliability measure, which simultaneously describes both performance and reliability, is applied as a constraint in an architecture optimization model for such computing systems. Index Terms-Architecture optimization, computation
Resumo:
This paper is aimed at reviewing the notion of Byzantine-resilient distributed computing systems, the relevant protocols and their possible applications as reported in the literature. The three agreement problems, namely, the consensus problem, the interactive consistency problem, and the generals problem have been discussed. Various agreement protocols for the Byzantine generals problem have been summarized in terms of their performance and level of fault-tolerance. The three classes of Byzantine agreement protocols discussed are the deterministic, randomized, and approximate agreement protocols. Finally, application of the Byzantine agreement protocols to clock synchronization is highlighted.
Resumo:
Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.