971 resultados para computational modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anatomy and microstructure of the spine and in particular the intervertebral disc are intimately linked to how they operate in vivo and how they distribute loads to the adjacent musculature and bony anatomy. The degeneration of the intervertebral discs may be characterised by a loss of hydration, loss of disc height, a granular texture and the presence of annular lesions. As such, degeneration of the intervertebral discs compromises the mechanical integrity of their components and results in adaption and modification in the mechanical means by which loads are distributed between adjacent spinal motion segments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this paper is two-dimensional computational modelling of water flow in unsaturated soils consisting of weakly conductive disconnected inclusions embedded in a highly conductive connected matrix. When the inclusions are small, a two-scale Richards’ equation-based model has been proposed in the literature taking the form of an equation with effective parameters governing the macroscopic flow coupled with a microscopic equation, defined at each point in the macroscopic domain, governing the flow in the inclusions. This paper is devoted to a number of advances in the numerical implementation of this model. Namely, by treating the micro-scale as a two-dimensional problem, our solution approach based on a control volume finite element method can be applied to irregular inclusion geometries, and, if necessary, modified to account for additional phenomena (e.g. imposing the macroscopic gradient on the micro-scale via a linear approximation of the macroscopic variable along the microscopic boundary). This is achieved with the help of an exponential integrator for advancing the solution in time. This time integration method completely avoids generation of the Jacobian matrix of the system and hence eases the computation when solving the two-scale model in a completely coupled manner. Numerical simulations are presented for a two-dimensional infiltration problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Modelling of the Vacuum Drying of Australian Hardwoods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present some recent developments in automated computational modelling with an emphasis on solid mechanics applications. The automation process permits an abstract mathematical model of a physical problem to be translated into computer code rapidly and trivially, and can lead to computer code which is faster than hand-written and optimised code. Crucial to the approach is ensuring that mathematical abstractions inherent in the mathematical model are inherited by the software library. © Springer Science+Business Media B.V. 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic crystals are materials that are used to control or manipulate the propagation of light through a medium for a desired application. Common fabrication methods to prepare photonic crystals are both costly and intricate. However, through a cost-effective laser-induced photochemical patterning, one-dimensional responsive and tuneable photonic crystals can easily be fabricated. These structures act as optical transducers and respond to external stimuli. These photonic crystals are generally made of a responsive hydrogel that can host metallic nanoparticles in the form of arrays. The hydrogel-based photonic crystal has the capability to alter its periodicity in situ but also recover its initial geometrical dimensions, thereby rendering it fully reversible and reusable. Such responsive photonic crystals have applications in various responsive and tuneable optical devices. In this study, we fabricated a pH-sensitive photonic crystal sensor through photochemical patterning and demonstrated computational simulations of the sensor through a finite element modelling technique in order to analyse its optical properties on varying the pattern and characteristics of the nanoparticle arrays within the responsive hydrogel matrix. Both simulations and experimental results show the wavelength tuneability of the sensor with good agreement. Various factors, including nanoparticle size and distribution within the hydrogel-based responsive matrices that directly affect the performance of the sensors, are also studied computationally. © 2014 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Underground constructions in soft ground may lead to settlement damage to existing buildings. In The Netherlands the situation is particularly complex, because of the combination of soft soil, fragile pile foundations and brittle, unreinforced masonry façades. The tunnelling design process in urban areas requires a reliable risk damage assessment. In the engineering practice the current preliminary damage assessment is based on the limiting tensile strain method (LTSM). Essentially this is an uncoupled analysis, in which the building is modelled as an elastic beam subject to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. The soil-structure interaction is included only as a ratio between the soil and the building stiffness. In this paper, a coupled approach is evaluated. The soil-structure interaction in terms of normal and shear behaviour is represented by interface elements and a cracking model for masonry is included. This project aims to improve the existing damage classification system for masonry buildings subjected to tunnel-induced settlement, in order to evaluate the necessity of strengthening techniques or mitigation measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational model of solder joint formation and the subsequent cooling behaviour is described. Given the rapid changes in the technology of printed circuit boards, there is a requirement for comprehensive models of solder joint formation which permit detailed analysis of design and optimization options. Solder joint formation is complex, involving a range of interacting phenomena. This paper describes a model implementation (as part of a more comprehensive framework) to describe the shape formation (conditioned by surface tension), heat transfer, phase change and the development of elastoviscoplastic stress. The computational modelling framework is based upon mixed finite element and finite volume procedures, and has unstructured meshes enabling arbitrarily complex geometries to be analysed. Initial results for both through-hole and surface-mount geometries are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.