18 resultados para computability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-level introduction for web science students, rather than for computer science students.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sujet visé par cette dissertation est la logique ordinale de Turing. Nous nous référons au texte original de Turing «Systems of logic based on ordinals» (Turing [1939]), la thèse que Turing rédigea à Princeton sous la direction du professeur Alonzo Church. Le principe d’une logique ordinale consiste à surmonter localement l’incomplétude gödelienne pour l’arithmétique par le biais de progressions d’axiomes récursivement consistantes. Étant donné son importance considérable pour la théorie de la calculabilité et les fondements des mathématiques, cette recherche méconnue de Turing mérite une attention particulière. Nous retraçons ici le projet d’une logique ordinale, de ses origines dans le théorème d’incomplétude de Gödel jusqu'à ses avancées dans les développements de la théorie de la calculabilité. Nous concluons par une discussion philosophique sur les fondements des mathématiques en fonction d’un point de vue finitiste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Étant donnée une fonction bornée (supérieurement ou inférieurement) $f:\mathbb{N}^k \To \Real$ par une expression mathématique, le problème de trouver les points extrémaux de $f$ sur chaque ensemble fini $S \subset \mathbb{N}^k$ est bien défini du point de vu classique. Du point de vue de la théorie de la calculabilité néanmoins il faut éviter les cas pathologiques où ce problème a une complexité de Kolmogorov infinie. La principale restriction consiste à définir l'ordre, parce que la comparaison entre les nombres réels n'est pas décidable. On résout ce problème grâce à une structure qui contient deux algorithmes, un algorithme d'analyse réelle récursive pour évaluer la fonction-coût en arithmétique à précision infinie et un autre algorithme qui transforme chaque valeur de cette fonction en un vecteur d'un espace, qui en général est de dimension infinie. On développe trois cas particuliers de cette structure, un de eux correspondant à la méthode d'approximation de Rauzy. Finalement, on établit une comparaison entre les meilleures approximations diophantiennes simultanées obtenues par la méthode de Rauzy (selon l'interprétation donnée ici) et une autre méthode, appelée tétraédrique, que l'on introduit à partir de l'espace vectoriel engendré par les logarithmes de nombres premiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A matemática intervalar é uma teoria matemática originada na década de 60 com o objetivo de responder questões de exatidão e eficiência que surgem na prática da computação científica e na resolução de problemas numéricos. As abordagens clássicas para teoria da computabilidade tratam com problemas discretos (por exemplo, sobre os números naturais, números inteiros, strings sobre um alfabeto finito, grafos, etc.). No entanto, campos da matemática pura e aplicada tratam com problemas envolvendo números reais e números complexos. Isto acontece, por exemplo, em análise numérica, sistemas dinâmicos, geometria computacional e teoria da otimização. Assim, uma abordagem computacional para problemas contínuos é desejável, ou ainda necessária, para tratar formalmente com computações analógicas e computações científicas em geral. Na literatura existem diferentes abordagens para a computabilidade nos números reais, mas, uma importante diferença entre estas abordagens está na maneira como é representado o número real. Existem basicamente duas linhas de estudo da computabilidade no contínuo. Na primeira delas uma aproximação da saída com precisão arbitrária é computada a partir de uma aproximação razoável da entrada [Bra95]. A outra linha de pesquisa para computabilidade real foi desenvolvida por Blum, Shub e Smale [BSS89]. Nesta aproximação, as chamadas máquinas BSS, um número real é visto como uma entidade acabada e as funções computáveis são geradas a partir de uma classe de funções básicas (numa maneira similar às funções parciais recursivas). Nesta dissertação estudaremos o modelo BSS, usado para se caracterizar uma teoria da computabilidade sobre os números reais e estenderemos este para se modelar a computabilidade no espaço dos intervalos reais. Assim, aqui veremos uma aproximação para computabilidade intervalar epistemologicamente diferente da estudada por Bedregal e Acióly [Bed96, BA97a, BA97b], na qual um intervalo real é visto como o limite de intervalos racionais, e a computabilidade de uma função intervalar real depende da computabilidade de uma função sobre os intervalos racionais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Performance-Based Earthquake Engineering (PBEE), evaluating the seismic performance (or seismic risk) of a structure at a designed site has gained major attention, especially in the past decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure (due to the future random earthquakes) at a site. For that purpose, Probabilistic Seismic Demand Analysis (PSDA) is utilized as a tool to estimate the Mean Annual Frequency (MAF) of exceeding a specified value of a structural Engineering Demand Parameter (EDP). This dissertation focuses mainly on applying an average of a certain number of spectral acceleration ordinates in a certain interval of periods, Sa,avg (T1,…,Tn), as scalar ground motion Intensity Measure (IM) when assessing the seismic performance of inelastic structures. Since the interval of periods where computing Sa,avg is related to the more or less influence of higher vibration modes on the inelastic response, it is appropriate to speak about improved IMs. The results using these improved IMs are compared with a conventional elastic-based scalar IMs (e.g., pseudo spectral acceleration, Sa ( T(¹)), or peak ground acceleration, PGA) and the advanced inelastic-based scalar IM (i.e., inelastic spectral displacement, Sdi). The advantages of applying improved IMs are: (i ) "computability" of the seismic hazard according to traditional Probabilistic Seismic Hazard Analysis (PSHA), because ground motion prediction models are already available for Sa (Ti), and hence it is possibile to employ existing models to assess hazard in terms of Sa,avg, and (ii ) "efficiency" or smaller variability of structural response, which was minimized to assess the optimal range to compute Sa,avg. More work is needed to assess also "sufficiency" and "scaling robustness" desirable properties, which are disregarded in this dissertation. However, for ordinary records (i.e., with no pulse like effects), using the improved IMs is found to be more accurate than using the elastic- and inelastic-based IMs. For structural demands that are dominated by the first mode of vibration, using Sa,avg can be negligible relative to the conventionally-used Sa (T(¹)) and the advanced Sdi. For structural demands with sign.cant higher-mode contribution, an improved scalar IM that incorporates higher modes needs to be utilized. In order to fully understand the influence of the IM on the seismis risk, a simplified closed-form expression for the probability of exceeding a limit state capacity was chosen as a reliability measure under seismic excitations and implemented for Reinforced Concrete (RC) frame structures. This closed-form expression is partuclarly useful for seismic assessment and design of structures, taking into account the uncertainty in the generic variables, structural "demand" and "capacity" as well as the uncertainty in seismic excitations. The assumed framework employs nonlinear Incremental Dynamic Analysis (IDA) procedures in order to estimate variability in the response of the structure (demand) to seismic excitations, conditioned to IM. The estimation of the seismic risk using the simplified closed-form expression is affected by IM, because the final seismic risk is not constant, but with the same order of magnitude. Possible reasons concern the non-linear model assumed, or the insufficiency of the selected IM. Since it is impossibile to state what is the "real" probability of exceeding a limit state looking the total risk, the only way is represented by the optimization of the desirable properties of an IM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to go through different approaches for proving expressiveness properties in several concurrent languages. We analyse four different calculi exploiting for each one a different technique. We begin with the analysis of a synchronous language, we explore the expressiveness of a fragment of CCS! (a variant of Milner's CCS where replication is considered instead of recursion) w.r.t. the existence of faithful encodings (i.e. encodings that respect the behaviour of the encoded model without introducing unnecessary computations) of models of computability strictly less expressive than Turing Machines. Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy. We then move to asynchronous languages and we study full abstraction for two Linda-like languages. Linda can be considered as the asynchronous version of CCS plus a shared memory (a multiset of elements) that is used for storing messages. After having defined a denotational semantics based on traces, we obtain fully abstract semantics for both languages by using suitable abstractions in order to identify different traces which do not correspond to different behaviours. Since the ability of one of the two variants considered of recognising multiple occurrences of messages in the store (which accounts for an increase of expressiveness) reflects in a less complex abstraction, we then study other languages where multiplicity plays a fundamental role. We consider the language CHR (Constraint Handling Rules) a language which uses multi-headed (guarded) rules. We prove that multiple heads augment the expressive power of the language. Indeed we show that if we restrict to rules where the head contains at most n atoms we could generate a hierarchy of languages with increasing expressiveness (i.e. the CHR language allowing at most n atoms in the heads is more expressive than the language allowing at most m atoms, with m

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die protokollbasierte Medizin stellt einen interdisziplinären Brennpunkt der Informatik dar. Als besonderer Ausschnitt der medizinischen Teilgebiete erlaubt sie die relativ formale Spezifikation von Prozessen in den drei Bereichen der Prävention, Diagnose und Therapie.Letzterer wurde immer besonders fokussiert und gilt seit jeher im Rahmen klinischer Studien als Projektionsfläche für informationstechnologische Konzepte. Die Euphorie der frühen Jahre ernüchtert sich jedoch bei jeder Bilanz. Nur sehr wenige der unzählbaren Projekte haben ihre Routine in der alltäglichen Praxis gefunden. Die meisten Vorhaben sind an der Illusion der vollständigen Berechenbarkeit medizinischer Arbeitsabläufe gescheitert. Die traditionelle Sichtweise der klinischen Praxis beruht auf einer blockorientierten Vorstellung des Therapieausführungsprozesses. Sie entsteht durch seine Zerlegung in einzelne Therapiezweige, welche aus vordefinierten Blöcken zusammengesetzt sind. Diese können sequentiell oder parallel ausgeführt werden und sind selbst zusammengesetzt aus jeweils einer Menge von Elementen,welche die Aktivitäten der untersten Ebene darstellen. Das blockorientierte Aufbaumodell wird ergänzt durch ein regelorientiertes Ablaufmodell. Ein komplexes Regelwerk bestimmt Bedingungen für die zeitlichen und logischen Abhängigkeiten der Blöcke, deren Anordnung durch den Ausführungsprozeß gebildet wird. Die Modellierung der Therapieausführung steht zunächst vor der grundsätzlichen Frage, inwieweit die traditionelle Sichtweise für eine interne Repräsentation geeignet ist. Das übergeordnete Ziel besteht in der Integration der unterschiedlichen Ebenen der Therapiespezifikation. Dazu gehört nicht nur die strukturelle Komponente, sondern vorallem die Ablaufkomponente. Ein geeignetes Regelmodell ist erforderlich, welches den spezifischen Bedürfnissen der Therapieüberwachung gerecht wird. Die zentrale Aufgabe besteht darin, diese unterschiedlichen Ebenen zusammenzuführen. Eine sinnvolle Alternative zur traditionellen Sichtweise liefert das zustandsorientierte Modell des Therapieausführungsprozesses. Das zustandsorientierte Modell beruht auf der Sichtweise, daß der gesamte Therapieausführungsprozeß letztendlich eine lineare Folge von Zuständen beschreibt, wobei jeder Zustandsübergang durch ein Ereignis eingeleitet wird, an bestimmte Bedingungen geknüpft ist und bestimmte Aktionen auslösen kann. Die Parallelität des blockorientierten Modells tritt in den Hintergrund, denn die Menge der durchzuführenden Maßnahmen sind lediglich Eigenschaften der Zustände und keine strukturellen Elemente der Ablaufspezifikation. Zu jedem Zeitpunkt ist genau ein Zustand aktiv, und er repräsentiert eine von endlich vielen klinischen Situationen, mit all ihren spezifischen Aktivitäten und Ausführungsregeln. Die Vorteile des zustandsorientierten Modells liegen in der Integration. Die Grundstruktur verbindet die statische Darstellung der möglichen Phasenanordnungen mit der dynamischen Ausführung aktiver Regeln. Die ursprünglichen Inhalte des blockorientierten Modells werden als gewöhnliche Eigenschaften der Zustände reproduziert und stellen damit nur einen Spezialfall der zustandsbezogenen Sicht dar.Weitere Möglichkeiten für die Anreicherung der Zustände mit zusätzlichen Details sind denkbar wie sinnvoll. Die Grundstruktur bleibt bei jeder Erweiterung jedoch die gleiche. Es ergibt sich ein wiederverwendbares Grundgerüst,ein gemeinsamer Nenner für die Erfüllung der Überwachungsaufgabe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox for the concept of a Turing machine, computability, computable sequences, and Turing’s effort to prove the unsolvability of the Entscheidungsproblem, are explained in light of the paradox. A solution to Turing’s Cardinality Paradox is proposed, positing a higher geometrical dimensionality of machine symbol-editing information processing and storage media than is available to canonical Turing machine tapes. The suggestion is to add volume to Turing’s discrete two-dimensional machine tape squares, considering them instead as similarly ideally connected massive three-dimensional machine information cells. Three-dimensional computing machine symbol-editing information processing cells, as opposed to Turing’s two-dimensional machine tape squares, can take advantage of a denumerably infinite potential for parallel digital sequence computing, by which to accommodate denumerably infinitely many computable diagonalizations. A three-dimensional model of machine information storage and processing cells is recommended on independent grounds as better representing the biological realities of digital information processing isomorphisms in the three-dimensional neural networks of living computers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a condition for rejecting the input word by an accepting splicing system which is defined by a finite set of forbidding words. We investigate the computational power of the new variants of accepting splicing systems. We show that the new condition strictly increases the computational power of accepting splicing systems. Rather surprisingly, accepting splicing systems considered here can accept non-regular languages, a situation that has never occurred in the case of (extended) finite splicing systems without additional restrictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Church-Turing Thesis is widely regarded as true, because of evidence that there is only one genuine notion of computation. By contrast, there are nowadays many different formal logics, and different corresponding foundational frameworks. Which ones can deliver a theory of computability? This question sets up a difficult challenge: the meanings of basic mathematical terms (like "set", "function", and "number") are not stable across frameworks. While it is easy to compare what different frameworks say, it is not so easy to compare what they mean. We argue for some minimal conditions that must be met if two frameworks are to be compared; if frameworks are radical enough, comparison becomes hopeless. Our aim is to clarify the dialectical situation in this bourgeoning area of research, shedding light on the nature of non-classical logic and the notion of computation alike.