990 resultados para compressive test


Relevância:

70.00% 70.00%

Publicador:

Resumo:

When an asphalt mixture is subjected to a destructive compressive load, it experiences a sequence of three deformation stages, as follows: the (1) primary, (2) secondary, and (3) tertiary stages. Most literature research focuses on plastic deformation in the primary and secondary stages, such as prediction of the flow number, which is in fact the initiation of the tertiary stage. However, little research effort has been reported on the mechanistic modeling of the damage that occurs in the tertiary stage. The main objective of this paper is to provide a mechanistic characterizing method for the damage modeling of asphalt mixtures in the tertiary stage. The preliminary study conducted by the writers illustrates that deformation during the tertiary flow of the asphalt mixtures is principally caused by the formation and propagation of cracks, which was signaled by the increase of the phase angle in the tertiary phase. The strain caused by the growth of cracks is the viscofracture strain, which can be obtained by conducting the strain decomposition of the measured total strain in the destructive compressive test. The viscofracture strain is employed in the research reported in this paper to mechanistically characterize the time-dependent fracture (viscofracture) of asphalt mixtures in compression. By using the dissipated pseudostrain energy-balance principle, the damage density and true stress are determined and both are demonstrated to increase with load cycles in the tertiary stage. The increased true stress yields extra viscoplastic strain, which is the reason why the permanent deformation is accelerated by the occurrence of cracks. To characterize the evolution of the viscofracture in the asphalt mixtures in compression, a pseudo J-integral Paris' law in terms of damage density is proposed and the material constants in the Paris' law are determined, which can be employed to predict the fracture of asphalt mixtures in compression. © 2013 American Society of Civil Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rheological parameters of raisins were obtained after three different drying methods: convective, osmo-convective and solar drying. Compression tests were applied to rehydrated samples by using a Texture Analyzer TAXT2i. A mathematical trick was used to determine the stress and area was calculated along the deformation. A power law model could adequately fit stress-true strain curves and parameters; K (measure of stiffness) and n (solid behavior index) were obtained as a function of water activity between 0.755 to 0.432. Results showed that these parameters were strongly dependent on water activity for all drying methods. The constant K, which indicates the resistance against deformation, increased with decreasing water activity. on the other hand, increasing water activity resulted in higher solid behavior indexes, showing a large deviation from the Hookean behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants (3.5 x 11 mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at 45 degrees inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated. [J Adv Prosthodont 2012;4:158-61]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geopolymers are solid aluminosilicate material made by mixing an activating solution and a solid precursor. This work studied the mechanisms of synthesis of metakaolin-based geopolymers and the influence of water content, described by the molar ratio H2O/Na2O, on the final product. The samples were tested using a Uniaxial Compressive Test (UCT) to define their compressive resistance. Two geopolymers series were synthetized and let them rest for 7- days and 28-days, each of them composed by six different sets. 7-day rest series showed that water addition had no relevant effect over its resistance while the 28-day rest series almost doubled the compressive resistance, although those with the highest H2O/Na2O molar ratio showed instead a drastic reduction. Two other series were synthesized by adding silt aggregate, a waste material obtained in the production of aggregate for concrete, corresponding to 10wt% and 20wt%of the metakaolin used. After 28 days of aging, these samples were tested via UCT to measure the variation of the compressive resistance after the silt addition. The aggregate has disruptive effects over the compressive resistance, but the 20wt% samples achieved a higher compressive resistance. Samples with highest and lowest compressive resistance have been chosen to carry out an XRD analysis. In all the samples it has been recognized the presence of Anatase (TiO2), a titanium oxide found in the metakaolin and Thermonatrite, a hydrated sodium carbonate [Na2CO3 • (H2O)]. Scanning Electron Microscopy was carried out on the samples with the highest compressive resistance and showed that the samples with lower water content developed a homogeneous geopolymeric texture, while those with higher water content showed instead a spongy-like texture and a higher air or pore solution bubbles presence. Silt/geopolymer composites showed a fracture system developing across the interstitial transition zone between the geopolymer matrix and the aggregate particle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compressive strength of concrete is an important factor in the design of concrete structures and pavements. To assure the quality of the concrete placed at the project, concrete compressive cylinders are made at the jobsite. These cylinders undergo a destructive test to determine their compressive strength. However, the determination of concrete compressive strength of the concrete actually in the structure or pavement is frequently desirable. For this reason, a nondestructive test of the concrete is required. A nondestructive test of concrete compressive strength should be economical, easily performed by field personnel, and capable of producing accurate, reproducible results. The nondestructive test should be capable of detecting the extent of poor concrete in a pavement or structure due to improper handling, placement, or variations in mixing or materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study investigated the effect of fly ash class, source and amount on the compressive strength and freeze-thaw durability of fly ash concrete. Concrete aggregates of varying quality were also included as test variables. The current results and those obtained from previous laboratory and field work indicate that compressive strength can·be affected by fly ash class, source and amount while aggregate quality is shown to have no effect on strength. Freeze-thaw durability of fly ash concrete is strongly affected by aggregate quality and to a lesser degree by fly ash class, amount and source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m(-2) for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m(-2) for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy-time curves of loading-unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The objective of this study was to verify the effect of cyclic compressive loading on the shear bond strength of an adhesive system following collagen removal. Materials and Methods: Sixty bovine teeth were divided into 4 groups based on the adhesive procedure used: groups 1 and 2 - etching with 35% phosphoric acid and application of the Single Bond adhesive system; groups 3 and 4 - after etching, a 10% sodium hypochlorite solution was applied for 1 min before the application of the adhesive. In all the specimens, a Z100 resin cylinder was built up over the bond area. Groups 2 and 4 were submitted to 500,000 cycles with a load of 100 N. Results: The mean values for the shear bond test (MPa) were: group 1: 7.37 ± 1.15; group 2: 5.72 ± 1.66; group 3: 5.95 ± 1.21; group 4: 3.66 ± 1.12. There was no difference between groups 1 and 2 (p > 0.01). Between groups 1 and 3, 2 and 4, and 3 and 4 there was a significant difference (p < 0.01). The majority of the specimens demonstrated an adhesive failure. Conclusion: The application of sodium hypochlorite on dentin decreased the values of shear bond strength, as did the load cycling in the group treated with sodium hypochlorite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm -2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane's test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth. © 2013 Astro Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este estudo comparou a resistência à compressão de uma resina composta e de um compômero, fotoativados com luz halógena convencional de quarto-tungstênio (QTH) (XL 300, 3M/SPE) e LED azul (SmartLite PS; Dentsply/De Trey). Foram confeccionados 40 espécimes em forma de disco usando uma matriz bipartida de politetrafluoretileno (4,0 mm de diâmetro x 8,0 mm de altura) em que o material foi inserido incrementalmente. O tempo de polimerização de cada incremento foi de 40 s para a luz halógena convencional e de 10 s para o LED. Os espécimes foram aleatoriamente alocados em 4 grupos (n=10), de acordo com a fonte de luz e com o material restaurador. Depois de armazenadas em água destilada a 37°C ± 2°C por 24 h, a resistência à compressão dos espécimes foi testada em uma máquina universal de ensaios com célula de carga de 500 kgf a uma velocidade de carregamento de 0,5 mm/min. Os dados (em MPa) foram analisados estatisticamente por ANOVA e teste de Student-Newman-Keuls (p<0,05). Para a resina composta, a fotopolimerização com luz halógena não produziu diferença estatisticamente significante (p>0,05) em sua resistência à compressão quando comparada à fotopolimerização com LED. Contudo, a fotopolimerização do compômero com a luz halógena resultou em uma resistência à compressão significativamente maior que a feita o LED (p>0,05). A resina composta apresentou resistência à compressão significativamente maior que a do compômero, independente da fonte de luz. Concluiu-se que a resistência à compressão dos materiais fotopolimerizados com luz halógena e LED foi influenciada pela densidade de energia empregada e pela composição química dos materiais restauradores estéticos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aims to compare three types of internal fixation for fractures of the mandibular angle. Mechanical testing was performed on replicas of polyurethane hemimandibles sectioned at the angle region to simulate a fracture and fixed with three different hardwares. Fixation devices enrolled on this survey included the grid plates with and without an intermediate bar and the method described by Champy and colleagues in 1978 and the sample consisted of 10 hemimandibles for each group. Vertical loadings were applied on each hemimandible and recorded after a vertical displacement of 3 and 5 mm. Statistical analysis was made by means of the variance analysis (ANOVA) and the Duncan test with a significance level of 5%. The Champy technique showed a statistically significant increased resistance when compared to the grid plates after vertical displacements of 3 and 5 mm. The results of this survey suggest that the Champy technique, when compared to the grid plate positioned at the middle of the mandibular bone (placement site selected for this study), is more resistant than the grid plate and that the inclusion or not of an intermediate bar to the grid plates does not improve its resistance after linear vertical loadings.