926 resultados para compositional geometry
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
Geochemical data that is derived from the whole or partial analysis of various geologic materialsrepresent a composition of mineralogies or solute species. Minerals are composed of structuredrelationships between cations and anions which, through atomic and molecular forces, keep the elementsbound in specific configurations. The chemical compositions of minerals have specific relationships thatare governed by these molecular controls. In the case of olivine, there is a well-defined relationshipbetween Mn-Fe-Mg with Si. Balances between the principal elements defining olivine composition andother significant constituents in the composition (Al, Ti) have been defined, resulting in a near-linearrelationship between the logarithmic relative proportion of Si versus (MgMnFe) and Mg versus (MnFe),which is typically described but poorly illustrated in the simplex.The present contribution corresponds to ongoing research, which attempts to relate stoichiometry andgeochemical data using compositional geometry. We describe here the approach by which stoichiometricrelationships based on mineralogical constraints can be accounted for in the space of simplicialcoordinates using olivines as an example. Further examples for other mineral types (plagioclases andmore complex minerals such as clays) are needed. Issues that remain to be dealt with include thereduction of a bulk chemical composition of a rock comprised of several minerals from which appropriatebalances can be used to describe the composition in a realistic mineralogical framework. The overallobjective of our research is to answer the question: In the cases where the mineralogy is unknown, arethere suitable proxies that can be substituted?Kew words: Aitchison geometry, balances, mineral composition, oxides
Resumo:
Geochemical data that is derived from the whole or partial analysis of various geologic materials represent a composition of mineralogies or solute species. Minerals are composed of structured relationships between cations and anions which, through atomic and molecular forces, keep the elements bound in specific configurations. The chemical compositions of minerals have specific relationships that are governed by these molecular controls. In the case of olivine, there is a well-defined relationship between Mn-Fe-Mg with Si. Balances between the principal elements defining olivine composition and other significant constituents in the composition (Al, Ti) have been defined, resulting in a near-linear relationship between the logarithmic relative proportion of Si versus (MgMnFe) and Mg versus (MnFe), which is typically described but poorly illustrated in the simplex. The present contribution corresponds to ongoing research, which attempts to relate stoichiometry and geochemical data using compositional geometry. We describe here the approach by which stoichiometric relationships based on mineralogical constraints can be accounted for in the space of simplicial coordinates using olivines as an example. Further examples for other mineral types (plagioclases and more complex minerals such as clays) are needed. Issues that remain to be dealt with include the reduction of a bulk chemical composition of a rock comprised of several minerals from which appropriate balances can be used to describe the composition in a realistic mineralogical framework. The overall objective of our research is to answer the question: In the cases where the mineralogy is unknown, are there suitable proxies that can be substituted? Kew words: Aitchison geometry, balances, mineral composition, oxides
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariableswith some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependenceof a composition with a categorical variable, a colored set of ternary diagrams mightbe a good idea for a first look at the data, but it will fast hide important aspects ifthe composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if theconventional, black-box ilr is used.Thinking on terms of the Euclidean structure of the simplex, we suggest to set upappropriate projections, which on one side show the compositional geometry and on theother side are still comprehensible by a non-expert analyst, readable for all locations andscales of the data. This is e.g. done by defining special balance displays with carefully-selected axes. Following this idea, we need to systematically ask how to display, explore,describe, and test the relation to complementary or explanatory data of categorical, real,ratio or again compositional scales.This contribution shows that it is sufficient to use some basic concepts and very fewadvanced tools from multivariate statistics (principal covariances, multivariate linearmodels, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariateanalysis
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis
Resumo:
The amalgamation operation is frequently used to reduce the number of parts of compositional data but it is a non-linear operation in the simplex with the usual geometry,the Aitchison geometry. The concept of balances between groups, a particular coordinate system designed over binary partitions of the parts, could be an alternative to theamalgamation in some cases. In this work we discuss the proper application of bothconcepts using a real data set corresponding to behavioral measures of pregnant sows
Resumo:
In this paper we examine the problem of compositional data from a different startingpoint. Chemical compositional data, as used in provenance studies on archaeologicalmaterials, will be approached from the measurement theory. The results will show, in avery intuitive way that chemical data can only be treated by using the approachdeveloped for compositional data. It will be shown that compositional data analysis is aparticular case in projective geometry, when the projective coordinates are in thepositive orthant, and they have the properties of logarithmic interval metrics. Moreover,it will be shown that this approach can be extended to a very large number ofapplications, including shape analysis. This will be exemplified with a case study inarchitecture of Early Christian churches dated back to the 5th-7th centuries AD
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) ofdifferent vertebrates using the Compositional Data Analysis (CDA) methodologicalapproach it’s presented.355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda,Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) wereanalyzed with CDA.A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinsondistance has been used as a measure of disparity in limb elements proportions to infersome aspects of functional morphology
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
Simpson's paradox, also known as amalgamation or aggregation paradox, appears whendealing with proportions. Proportions are by construction parts of a whole, which canbe interpreted as compositions assuming they only carry relative information. TheAitchison inner product space structure of the simplex, the sample space of compositions, explains the appearance of the paradox, given that amalgamation is a nonlinearoperation within that structure. Here we propose to use balances, which are specificelements of this structure, to analyse situations where the paradox might appear. Withthe proposed approach we obtain that the centre of the tables analysed is a naturalway to compare them, which avoids by construction the possibility of a paradox.Key words: Aitchison geometry, geometric mean, orthogonal projection
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
Within the special geometry of the simplex, the sample space of compositional data, compositional orthonormal coordinates allow the application of any multivariate statistical approach. The search for meaningful coordinates has suggested balances (between two groups of parts)—based on a sequential binary partition of a D-part composition—and a representation in form of a CoDa-dendrogram. Projected samples are represented in a dendrogram-like graph showing: (a) the way of grouping parts; (b) the explanatory role of subcompositions generated in the partition process; (c) the decomposition of the variance; (d) the center and quantiles of each balance. The representation is useful for the interpretation of balances and to describe the sample in a single diagram independently of the number of parts. Also, samples of two or more populations, as well as several samples from the same population, can be represented in the same graph, as long as they have the same parts registered. The approach is illustrated with an example of food consumption in Europe