997 resultados para composite member


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instability of laminated curved composite beams made of repeated sublaminate construction is studied using finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate which has a smaller number of plies. This paper deals with the determination of optimum lay-up for buckling by ranking of such composite curved beams (which may be solid or sandwich). For this purpose, use is made of a two-noded, 16 degress of freedom curved composite beam finite element. The displacements u, v, w of the element reference axis are expressed in terms of one-dimensional first-order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains, occurring in beams subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. The computer program developed has been used, after extensive checking for correctness, to obtain optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for typical curved solid/sandwich composite beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model for the compressive and shear response of monolithic and hierarchical corrugated composite cores has been developed. The stiffness model considers the contribution in stiffness from the bending- and the shear deformations of the core members in addition to the stretching deformation. The strength model is based on the normal stress and shear stress distribution over each core member when subjected to a shear or compressive load condition. The strength model also accounts for initial imperfections. In part 1 of this series, the analytical model is described and the results are compared to finite element predictions. In part 2, the analytical model is compared to experimental results and the behaviour of the corrugated structures is investigated more thoroughly using failure mechanism maps. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the relationship between organisational effectiveness and member participation in Irish credit unions. It is hypothesised that a positive relationship exists between both variables. Co-operative literature suggests that co-operatives require the involvement of the members in identifying and meeting their own needs in order to be effective organisations. Previous research studies into the issue across a variety of organisational types have shown mixed results. Related research into credit unions is sparse. The primary research undertaken is both quantitative and qualitative in approach. Organisational effectiveness is examined in both quantitative and qualitative terms. Member participation, being an organisational process, is examined in qualitative terms. Indicators of organisational effectiveness, specific to credit unions, are drawn up and form a framework through which effectiveness is examined. A typology and indicators of member participation are also developed and form a framework through which member participation is examined. The case study method is used primarily, to examine organisational effectiveness and member participation in Irish credit unions. A case study of a theoretical credit union, which is based on a composite of good practice in credit unions in Ireland and internationally, is also drawn up to develop the analysis further. The case studies allow an analysis of both organisational effectiveness and member participation, as well as an exploration of the relationship between the two. The findings support the hypothesis that there is a direct relationship between the two variables. In order to be effective, credit unions must involve their members in identifying their needs and in designing services to meet these needs. At present, they do not do this to any large extent. In order to continue to meet the needs of their members and to compete in the financial services sector, credit unions will need to find ways of involving members, drawing on good practice in other co-operatives. This will be critical to their continued success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper gives an overview of the work carried out in a GARTEUR (Group for Aeronautical Research and Technology in Europe) program, under the chairmanship of the author, to develop and validate analytical and numerical methods to characterise real impact damage in composite structures, particularly those designed to sustain load in a postbuckled state, and to study the durability of bonded repairs. GARTEUR is an inter-governmental agreement between the seven European countries with the largest direct employment in the Aerospace industry, to mobilise scientific and technical knowledge between the member countries. A number of Action Groups have been launched, since GARTEUR’s inception in the early 1970s, to address specific technical issues of interest to the participating members. The research presented in this paper was performed under Action Group 28 with partners from ONERA, EADS-CCR (France), DLR, AIRBUS-Deutschland, EADS-M (Germany), CIRA (Italy), INTA (Spain), SICOMP, Saab, (Sweden), NLR (The Netherlands), QinetiQ, BAE Systems, Imperial College London and the University of Sheffield (United Kingdom). The Action Group tasks were divided into four Work Elements (WEs): WE1-Prediction and characterisation of impact damage, WE2- Postbuckling with delamination, WE3-Repair and WE4-Fatigue. This paper outlines the main developments and achievements within each Work Element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Family caregivers play a vital role in maintaining the lives of individuals with advanced illness living in the community. However, the responsibility of caregiving for an end-of-life family member can have profound consequences on the psychological, physical and financial well-being of the caregiver. While the literature has identified caregiver stress or strain as a complex process with multiple contributing factors, few comprehensive studies exist. This study examined a wide range of theory-driven variables contributing to family caregiver stress. Method: Data variables from interviews with primary family caregivers were mapped onto the factors within the Stress Process Model theoretical framework. A hierarchical multiple linear regression analysis was used to determine the strongest predictors of caregiver strain as measured by a validated composite index, the Caregiver Strain Index. Results: The study included 132 family caregivers across south-central/western Ontario, Canada. About half of these caregivers experienced high strain, the extent of which was predicted by lower perceived program accessibility, lower functional social support, greater weekly amount of time caregivers committed to the care recipient, younger caregiver age and poorer caregiver self-perceived health. Conclusion: This study examined the influence of a multitude of factors in the Stress Process Model on family caregiver strain, finding stress to be a multidimensional construct. Perceived program accessibility was the strongest predictor of caregiver strain, more so than intensity of care, highlighting the importance of the availability of community resources to support the family caregiving role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.