992 resultados para composite media
Resumo:
The thermal conductivity of periodic composite media with spherical or cylindrical inclusions embedded in a homogeneous matrix is discussed. Using Green functions, we show that the Rayleigh identity can be generalized to deal with thermal properties ot these systems. A new calculating method for effective conductivity of composite media is proposed. Useful formulae for effective thermal conductivity are derived, and meanings of contact resistance in engineering problems are explained.
Resumo:
The thermal conductivity of periodic composite media with spherical inclusions embedded in a homogeneous matrix is discussed. Using Green's function, we show that the Rayleigh identity can be generalized to deal with the thermal properties of these systems. A technique for calculating effective thermal conductivities is proposed. Systems with cubic symmetries (including simple cubic, body centered cubic and face centered cubic symmetry) are investigated in detail, and useful formulae for evaluating effective thermal conductivities are derived.
Resumo:
A general effective response is proposed for nonlinear composite media, which obey a current field relation of the form J = sigmaE + chi\E\(2) E when an external alternating current (AC) electrical field is applied. For a sinusoidal applied field with finite frequency omega, the effective constitutive relation between the current density and electric field can be defined as,
Resumo:
Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of ten acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both ‘primary’ (internal sample interface) and ‘secondary’ (external sample interface) echoes. A transit time spectrum (TTS) was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7±3.7% of the simulated data was within ±1 standard deviation (STD) of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R2) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Further, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy (PE-UTTS) include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts.
Resumo:
21 p.
Resumo:
The effective dielectric response of linear composites containing graded material is investigated under an applied electric field Eo. For the cylindrical inclusion with gradient dielectric function, epsilon(i)(r) = b + cr, randomly embedded in a host with dielectric constant epsilon(m), we have obtained the exact solution of local electric potential of the composite media regions, which obeys a linear constitutive relation D = epsilonE, using hypergeometric function. In dilute limit, we have derived the effective dielectric response of the linear composite media. Furthermore, for larger volume fraction, the formulas of effective dielectric response of the graded composite media, are given.
Resumo:
The effective dielectric response of composites containing graded material is investigated when an external uniform electric field E-0 is applied to it. For a spherical particle with gradient dielectric constant, epsilon(i) (r) = b + cr, randomly embedded in a host with dielectric constant epsilon(m), we have obtained the exact solution of local electric potential in the composite media regions, which obey a linear constitutive relation D = epsilonE, using hypergeometric function. In dilute limit, the effective dielectric response of the linear graded composite media is derived. Furthermore, for larger volume fraction, we have given an effective medium approximation to estimate the effective dielectric response of the graded composite media. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
The effective thermal conductivity of graded composites with contact resistance on the inclusion surface is investigated. As an example, we have considered the graded composite media with a spherical particle embedded in a homogeneous matrix, where the thermal conductivity of spherical inclusion is an exponential function k(i) = c exp(betar) (where r is the inside distance of a point in particle from the center of the spherical particle in a spherical coordinate). For both heat contact resistance and perfect contact cases, we have given a reasonable effective medium approximation to calculate the effective conductivity. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.
Resumo:
A new mathematical model for the transient flow in the composite low permeability is established. It is solved by FEM with different boundary conditions such as infinite, circular closed and constant pressure boundary conditions. The typical curves for transient wellbore pressure have been presented. It is shown that the pressure and pressure derivative curves with composite start-up pressure gradients have different slopes which are depended on the start-up pressure gradients and the mobility radios in different regions. The boundary effects are the same as the normal reservoirs without start-up pressure gradients. The study provides a new tool to analyze the transient pressure test data in the low permeability reservoir.
Resumo:
Immersion in various media has different effect on the properties of dental composites, such as sorption, solubility, elution of unreacted monomers, flexural strength, and flexural elastic modulus. In the present work, the effect of immersion in various media and the relationship between the variation of these properties and the components of dental composite were investigated.
Resumo:
Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm(2)), Jet Lite 4000 Plus (1230mW/cm(2)), and Ultralume Led 5 (790 mW/cm(2)) and immersion media were artificial saliva, Coke(R), tea and coffee, totaling 12 experimental groups. Specimens (10 mm X 2 mm) were immersed in each respective Solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37 degrees C +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon. potassium and phosphorus. For Coke(R), excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke(R) affected material`s surface more than did the other tested drinks. Microsc. Res. Tech. 73:176-181, 2010. (c) 2009 Wiley-Liss Inc.
Resumo:
Objective: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. Material and Methods: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke (R) and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37 +/- 1 degrees C, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). Results: High-power-density LED (Delta E=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - Delta E=2.05; XL 3000 - Delta E=2.28). Coffee (Delta E=8.40; Delta L=-5.21) showed the highest influence on color stability of the studied composite resin. Conclusion: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.
Resumo:
This study evaluated the effect of surface sealant on the translucency of composite resin immersed in different solutions. The study involved the following materials: Charisma, Fortify and coffee, Coca-Cola®, tea and artificial saliva as solutions. Sixty-four specimens (n = 8) were manufactured and immersed in artificial saliva at 37 ± 1 °C. Samples were immersed in the solutions for three times a day and re-immersed in artificial saliva until the translucency readings. The measurements were carried out at nine times: T1 - 24 hours after specimen preparation, T2 - 24 hours after immersion in the solutions, T3 - 48 hours and T4 to T9 - 7, 14, 21, 30, 60 and 90 days, respectively, after immersion. The translucency values were measured using a JOUAN device. The results were subjected to ANOVA and Tukey's test at 5%. The surface sealant was not able to protect the composite resin against staining, the coffee showed the strongest staining action, followed by tea and regarding immersion time, a significant alteration was noted in the translucency of composite resin after 21 days.
Resumo:
The study evaluated the influence of light curing units and immersion media on superficial roughness and microhardness of the nanofilled composite resin Supreme XT (3M/ESPE). Light curing units used were: XL 3000 (3M/ESPE), Jet Lite 4000 Plus (JMorita) and Ultralume Led 5 (Ultradent) and immersion media were artificial saliva, Coke®, tea and coffee, totaling 12 experimental groups. Specimens (10mm x 2mm) were immersed in each respective solution for 5 seconds, three times a day, during 60 days and so, were submitted to measure of superficial roughness (Ra) and Vickers hardness. Data were subjected to two-way ANOVA test (p<0.05). Results showed that only the light source factor showed statistically difference for hardness. It was observed that the hardness of the composite resin Filtek Supreme XT (3M/ESPE) was influenced by the light source (p<0.01) independently of the immersion media (p= 0.35) and the Jet Lite 4000 Plus (JMorita) was the light curing unit that presented lower values. In relation to surface roughness, it was noted no-significant statistical difference for light source (p=0.84), when specimens were immersed in different beverages (p=0.35).