907 resultados para compensatory feeding
Resumo:
I solved equations that describe coupled hydrolysis in and absorption from a continuously stirred tank reactor (CSTR), a plug flow reactor (PFR), and a batch reactor (BR) for the rate of ingestion and/or the throughput time that maximizes the rate of absorption (=gross rate of gain from digestion). Predictions are that foods requiring a single hydrolytic step (e.g., disaccharides) yield ingestion rates that vary inversely with the concentration of food substrate ingested, whereas foods that require multiple hydrolytic and absorptive reactions proceeding in parallel (e.g., proteins) yield maximal ingestion rates at intermediate substrate concentrations. Counterintuitively, then, animals acting to maximize their absorption rates should show compensatory ingestion (more rapid feeding on food of lower concentration), except for the lower range of diet quality fur complex diets and except for animals that show purely linear (passive) uptake. At their respective maxima in absorption rates, the PFR and BR yield only modestly higher rates of gain than the CSTR but do so at substantially lower rates of ingestion. All three ideal reactors show milder than linear reduction in rate of absorption when throughput or holding time in the gut is increased (e.g., by scarcity or predation hazard); higher efficiency of hydrolysis and extraction offset lower intake. Hence adding feeding costs and hazards of predation is likely to slow ingestion rates and raise absorption efficiencies substantially over the cost-free optima found here.
Resumo:
Although the effectiveness of herbivores in mitigating the effects of nutrient enrichment is well documented, few studies have examined the effects of nutrient enrichment on components of consumer fitness. Enclosures were deployed in shallow turtle grass (Thalassia testudinum) beds in Florida Bay, Florida in fall 2003, spring 2004, and fall 2004 to measure the effects of nitrogen and phosphorous enrichment on the growth, fecundity, and stoichiometry of three invertebrate epiphyte grazers commonly associated with T. testudinum. The gastropod Turbo castanea exhibited significantly greater wet weight gain and lower C:P and N:P in enriched than in ambient treatments. Although nutrient enrichment did not have any significant effects on the growth of caridean shrimp (treatment consisted of several different caridean shrimp species), their C:N was significantly lower in enriched treatments. The final size and stoichiometry of the hermit crab Paguristes tortugae was not significantly affected by nutrient enrichment, nor did nutrient enrichment significantly affect the fecundity of P. tortugae, the only grazer in which gravid individuals or egg masses were present. Our study demonstrated that nutrient enrichment of primary producers can positively affect the growth of marine invertebrate grazers and alter their stoichiometry; however, these effects were species-specific and may be dependent upon the life stage, specific diets, and/or compensatory feeding habits of the grazers.
Resumo:
The compensatory responses of juvenile gibel carp and Chinese longsnout catfish to four cycles of 1 part of a study designed to determine feeding regimes that would maximise growth rates. Both species showed compensatory growth in the re-feeding periods. The compensation was not sufficient for the deprived fish to match the growth trajectories of controls fed to satiation daily. The compensatory growth response was more clearly defined in the later cycles. The deprived fish showed hyperphagia during the 2-week periods of re-feeding and the hyperphagic response was clearer in the later cycles. The hyperphagia tended to persist for both weeks of the re-feeding period. The gibel carp showed no difference in gross growth efficiency between deprived and control fish. In the catfish, the gross growth efficiency of the deprived fish was marginally higher than that of control fish, but the efficiency varied erratically from week to week. Over the experiment, the deprived fish achieved growth rates 75-80% of those shown by control fish, although fed at a frequency of 66%. There was no evidence of growth over-compensation with the deprivation-re-feeding protocol used in this study. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Does exercise promote weight loss? One of the key problems with studies assessing the efficacy of exercise as a method of weight management and obesityis that mean data are presented and the individual variability in response is overlooked. Recent data have highlighted the need to demonstrate and characterise the individual variability in response to exercise. Do people who exercise compensate for the increase in energy expenditure via compensatory increases in hunger and food intake? The authors address the physiological, psychological and behavioural factors potentially involved in the relationship between exercise and appetite, and identify the research questions that remain unanswered. A negative consequence of the phenomena of individual variability and compensatory responses has been the focus on those who lose little weight in response to exercise; this has been used unreasonably as evidence to suggest that exercise is a futile method of controlling weight and managing obesity. Most of the evidence suggests that exercise is useful for improving body composition and health. For example, when exercise-induced mean weight loss is <1.0 kg, significant improvements in aerobic capacity (+6.3 ml/kg/min), systolic (−6.00 mm Hg) and diastolic (−3.9 mm Hg) blood pressure, waist circumference (−3.7 cm) and positive mood still occur. However, people will vary in their responses to exercise; understanding and characterising this variability will help tailor weight loss strategies to suit individuals.
Resumo:
Compensatory growth is a phase of accelerated growth apparent when favourable conditions are restored after a period of growth depression. To investigate if F-2 common 'all-fish' growth hormone gene transgenic common carp (Cyprinus carpio) could mount compensatory growth, a 9 week study at 29 degrees C was performed. The control group was fed to satiation twice a day throughout the experiment. The other two groups were deprived of feed for 1 or 2 weeks, respectively, and then fed to satiation during the re-feeding period. At the end of the experiment, the live masses of fish in the deprived groups were still significantly lower than those of the controls. During the re-feeding period, size-adjusted mean specific growth rates and mean feed intakes were significantly higher in the deprived fish than in the controls, indicating a partial compensatory growth response in these fish. No significant differences were found in food conversion efficiency between the deprived and control fish during re-feeding, suggesting that hyperphagia was the mechanism responsible for increased growth rates. The proximate composition of the deprived fish at the end of the experiment was similar to that of the control fish. This study is, to our knowledge, the first to report that fast-growing transgenic fish can achieve partial compensation of growth following starvation. (c) 2007 The Authors Journal compilation (c) 2007 The Fisheries Society of the British Isles.
Resumo:
The capacity of hybrid tilapia Oreochromis mossambicus x O. niloticus [23.2 +/- 0.2 g (mean +/- SE)] to show compensatory growth was assessed in an 8-week experiment. Fish were deprived of feed for 1, 2 and 4 weeks, and then fed to satiation for 4 weeks; fish fed to satiation during the experiment served as control. Water temperature gradually declined from 28.1 to 25.5 degrees C throughout the experiment. Specific growth rate (SGR) decreased with progressive food deprivation. At the end of deprivation, body weight was lower in the deprived fish than in the control. Fish deprived for 4 weeks exhibited lower contents of lipids and energy in whole body, and higher moisture content and ratio of protein to energy (P/E) than those of the control; they also consumed feed faster than the control when normal feeding was resumed. All deprived fish showed higher food intake (FI) than that of the control during re-alimentation; however, enhanced SGR was only observed in the fish deprived for 4 weeks. There were no significant differences in digestibility of protein and energy, food efficiency (FE) or energy retention efficiency between the control and deprived fish. At the end of re-alimentation, deprived fish failed to catch up in body weight with the control, while content of moisture, lipids and energy, and P/E in whole body of the deprived fish did not significantly differ from that of the control. The results of the experiment revealed that the hybrid tilapia reared in freshwater showed partial capacity for compensatory growth following food deprivation of 4 weeks, and that growth compensation was due mainly to increased FI, rather than to improved FE.
Resumo:
Different protocols of food deprivation were used to bring two groups of juvenile three-spined sticklebacks Gaslerosteus aculeatus to the same reduced body mass in comparison with a control group fed daily ad libitum. One group experienced I week or deprivation then 2 weeks on maintenance rations. The second group experienced I week of ad lithium feeding followed by 2 weeks of deprivation. The deprived groups were reduced to a mean mass ore. 80% of controls. The compensatory growth response shown when ad libitum feeding was resumed was independent of the trajectory by which the three-spined sticklebacks had reached the reduced body mass. The compensatory response was Sufficient to return the deprived groups to the mass and length trajectories shown by the control group within 4 weeks. There was full compensation for dry mass and total lipid, but incomplete compensation for lipid-free dry mass. Hyperphagia and increased growth efficiency were present in the re-feeding phase, but there was a lag of a week before the hyperphagia was established. The consistency of the compensatory response of immature three-spined sticklebacks provides a potential model system for the analysis and prediction of appetite and growth in teleosts. (C) 2003 The Fisheries Society of the British isles.
Resumo:
To investigate the nature of compenstory growth in fish, an 8 week study at 28 degreesC was performed on juvenile gibel carp Carassius auratus gibelio weighing 6.6 g. Fish were starved for 0 (control), 1 (Sl)or 2 (S2) weeks and then re-fed to satiation For 5 weeks. Weekly changes in weight gain, feed intake and body composition were monitored during re-feeding. No significant difference was found in final body weight between the three groups, indicating complete compensation in the deprived fish, The deprived groups caught up in body weight with that of the control after 2 weeks of re-feeding. Body fat:lean body mass ratio was restored to the control level within 1 week of re-feeding. In the re-feeding period, weekly gains in body weight, protein. lipid, ash and energy in the S1 group were significantly higher than in the controls for 1 week. For the S2 group, weekly gains in body weight. lipid. ash and energy were higher than in the controls for 2 weeks, and gain in protein was higher than in the controls for 3 weeks, though gain in body energy became elevated again during the last 2 weeks of the experiment. Feed intake remained higher than the control level for 3 weeks in the S1 group and 3 weeks in the SZ group. Growth efficiency was not significantly different among the three groups in any of the weeks during re-feeding. Compensatory responses in growth and especially feed intake tended to last longer than the recovery of body composition. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
The compensatory growth responses of individual juveniles of two co-existing species were compared after identical periods of starvation to determine inter-specific similarities and differences. The carnivorous stickleback Gasterosteus aculeatus was compared with the omnivorous minnow Phoxinus phoxinus. Both species experienced 1 or 2 weeks of starvation before being re-fed ad libitum. The two species differed in their response to the starvation periods, with minnows showing a lower weight-specific loss. Both species showed compensatory responses in appetite, growth and to a lesser extent, growth efficiency. Minnows wholly compensated for 1 and 2 weeks of starvation. At the end of the experiment, sticklebacks starved For 2 weeks were still showing a compensatory response and had nut achieved full compensation. The compensatory responses of the sticklebacks showed a lag of a week before developing in the re-feeding phase, whereas the response of the minnows was immediate. Analysis of lipid and dry matter concentrations suggested that the compensatory response restored reserve lipids while also bringing the fish back to the growth trajectory of continuously fed fish. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
Three experiments were conducted with juveniles of the crayfish Cherax quadricarinatus to investigate the effect of intermittent feeding regimes on growth and the ability to tolerate the shortage of food. In experiment 1, stage III juveniles were assigned to one of seven intermittent feeding groups (from FS1: 1 day fed/1 day non-fed to FS7: 7 days fed/7 days non-fed) and two control groups, continuously fed (CF) and continuously starved (CS) animals; this experiment comprised a short-term intermittent feeding period until the first molt, followed by a continuous feeding period. In the experiment 2, stage III juveniles were assigned to one of three intermittent feeding groups (FS2 to FS4) and one control group (CF); it consisted of a prolonged intermittent feeding period, until the end of the experiment In the experiment 3, stage VI and VII juveniles were assigned to one of three intermittent feeding groups (FS2 to FS4) and one control (CF); it also consisted of a prolonged intermittent feeding period. The red claw crayfish juveniles were able to tolerate periods of intermittent feeding and underwent compensatory growth after continuous feed was re-established. The ability of crayfish to tolerate intermittent feeding was influenced by developmental stage and duration of the intermittent feeding period. Stage III juveniles survived, but decreased growth, when subjected to prolonged intermittent feeding. However, they showed full compensatory growth when the intermittent feeding period was short and followed by continuous feeding. on the other hand, stage VI-VII tolerated 60 days of prolonged intermittent feeding without any change in growth and survival. The hepatosomatic index (based on wet weight) values of the treatments and the control were similar, suggesting that intermittent feeding may not be considered a nutritional stress condition. The relative pleon weight (based on wet weight) values of the treatments and control were similar suggesting low use of nutrients from the muscle to increase the chance for survival. The juveniles of C quadricarinatus can tolerate relatively long periods of low food availability and this is an important adaptation for their survival in changing/unpredictable environments and an attribute favorable for the production of the species. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the postweaning history of heifers kept on marandu grass pastures with three canopy heights, in a continuous-grazing system, during the rainy period, on feedlot-or pasture finishing. The effects of three canopy heights (15, 25 and 35 cm) associated with two supplements (mineral salt and protein-energy supplement) and two finishing systems in the dry period (feedlot and open pasture) were studied in the postweaning period during the rainy season. The adopted design was completely randomized, with seven replications (animals) in a 2 x 2 factorial arrangement. The animals which received protein-energy supplement reached the finishing period with greater body weight in relation to those fed mineral salt. In both feedlot and pasture finishing systems, compensatory gain effect was observed in the animals that remained on the low pastures during postweaning compared with the high pastures. This compensatory gain was not verified in the animals that received protein-energy supplement in relation to the mineral salt, and thus the animals were slaughtered beforehand. The heifers on pastures with 25 or 35 cm in height were slaughtered in the same period, and those kept on the low pastures were slaughtered afterwards. The studied factors in the postweaning phase did not affect the carcass characteristics. Animals finished in feedlot slaughtered with the same body weight as those finished on pasture show greater carcass yield, subcutaneous fat deposition and renal pelvic and inguinal fat and greater losses with trimmings for cleaning the main hindquarter meat cuts; however, they provide cuts with the same weight but greater fat cover.
Resumo:
Developing nutritional strategies that can reduce production costs for the fish industry without affecting productive performance is paramount to make the activity sustainable. We investigated if short-term cycles of feed deprivation and refeeding elicit compensatory growth in matrinxa (Brycon amazonicus) juveniles, using three feeding protocols for 60 days (Phase 1): two levels of deprivation (feed deprivation for two days and refeeding for three - D2R3, or four days - D2R4) and a control level (daily feeding). Following, all fish groups were fed daily at satiation for 15 days (Phase 2). At Phase 1, matrinxa achieved full compensatory growth in both deprivation levels by increasing feed intake and feed efficiency. Overall, deprived fish consumed 40% (D2R3) and 36% (D2R4) less feed than fish fed daily. In Phase 2, growth was similar for all fish. Feed intake increased in both deprived fish, but feed efficiency did not differ among groups and was lower than in Phase 1, indicating a reduced efficiency in feed utilization when food was freely available. We propose that intermittent cycles of feeding represent an effective means to reduce production costs. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The large, bunodont postcanine teeth in living sea otters (Enhydra lutris) have been likened to those of certain fossil hominins, particularly the ’robust’ australopiths (genus Paranthropus). We examine this evolutionary convergence by conducting fracture experiments on extracted molar teeth of sea otters and modern humans (Homo sapiens) to determine how load-bearing capacity relates to tooth morphology and enamel material properties. In situ optical microscopy and x-ray imaging during simulated occlusal loading reveal the nature of the fracture patterns. Explicit fracture relations are used to analyze the data and to extrapolate the results from humans to earlier hominins. It is shown that the molar teeth of sea otters have considerably thinner enamel than those of humans, making sea otter molars more susceptible to certain kinds of fractures. At the same time, the base diameter of sea otter first molars is larger, diminishing the fracture susceptibility in a compensatory manner. We also conduct nanoindentation tests to map out elastic modulus and hardness of sea otter and human molars through a section thickness, and microindentation tests to measure toughness. We find that while sea otter enamel is just as stiff elastically as human enamel, it is a little softer and tougher. The role of these material factors in the capacity of dentition to resist fracture and deformation is considered. From such comparisons, we argue that early hominin species like Paranthropus most likely consumed hard food objects with substantially higher biting forces than those exerted by modern humans.
Resumo:
An experiment was conducted using Angus cross steer calves of three frame sizes (small, medium, and large) to compare performance of two different grow/finish feeding programs. Half of the cattle in each frame size group were fed a high energy ration through the growing period, similar to calves going directly into the feedlot. The other half was fed a low energy ration, similar to a backgrounding diet, for a period prior to the finishing phase. All cattle were fed a high energy ration through the finishing period. The data showed the cattle fed the low energy growing diet experienced some compensatory gains as shown by ultrasound backfat and average daily gains coupled with intakes greater than the increases seen in the high energy treatment. Carcass data and overall performance data showed no ill effects due to the low energy growing ration.
Resumo:
Three experiments were conducted with juveniles of the crayfish Cherax quadricarinatus to investigate the effect of intermittent feeding regimes on growth and the ability to tolerate the shortage of food. In experiment 1, stage III juveniles were assigned to one of seven intermittent feeding groups (from FS1: 1 day fed/1 day non-fed to FS7: 7 days fed/7 days non-fed) and two control groups, continuously fed (CF) and continuously starved (CS) animals; this experiment comprised a short-term intermittent feeding period until the first molt, followed by a continuous feeding period. In the experiment 2, stage III juveniles were assigned to one of three intermittent feeding groups (FS2 to FS4) and one control group (CF); it consisted of a prolonged intermittent feeding period, until the end of the experiment In the experiment 3, stage VI and VII juveniles were assigned to one of three intermittent feeding groups (FS2 to FS4) and one control (CF); it also consisted of a prolonged intermittent feeding period. The red claw crayfish juveniles were able to tolerate periods of intermittent feeding and underwent compensatory growth after continuous feed was re-established. The ability of crayfish to tolerate intermittent feeding was influenced by developmental stage and duration of the intermittent feeding period. Stage III juveniles survived, but decreased growth, when subjected to prolonged intermittent feeding. However, they showed full compensatory growth when the intermittent feeding period was short and followed by continuous feeding. on the other hand, stage VI-VII tolerated 60 days of prolonged intermittent feeding without any change in growth and survival. The hepatosomatic index (based on wet weight) values of the treatments and the control were similar, suggesting that intermittent feeding may not be considered a nutritional stress condition. The relative pleon weight (based on wet weight) values of the treatments and control were similar suggesting low use of nutrients from the muscle to increase the chance for survival. The juveniles of C quadricarinatus can tolerate relatively long periods of low food availability and this is an important adaptation for their survival in changing/unpredictable environments and an attribute favorable for the production of the species. (C) 2011 Elsevier B.V. All rights reserved.