995 resultados para community respiration
Resumo:
Máster en Oceanografía
Resumo:
The microalgal community as primary producers has to play a significant role in the biotic and abitoic interactions of any aquatic ecosystem. Whenever a community is exposed to a pollutant, responses can occur because individuals acclimate to pollutant caused changes and selection can occur favouring resistant genotypes within a population and selection among species can result in changes in community structure. The microalgal community of industrial effluent treatment systems are continuously exposed to pollutants and there is little data available on the structure and seasonal variation of microalgal community of industrial effluent holding ponds, especially of a complex effluent like that of refinery. The aim of the present study was to investigate the annual variation in the ecology, biomass, productivity and community structure of the algal community of a refinery effluent holding pond. The results of the study showed the pond to be a eutrophic system with a resistant microalgal community with distinct seasonal variation in species composition
Resumo:
Ocean acidification is an effect of the rise in atmospheric CO2, which causes a reduction in the pH of the ocean and generates a number of changes in seawater chemistry and consequently potentially impacts seawater life. The effect of ocean acidification on metabolic processes (such as net community production and community respiration and on particulate organic carbon (POC) concentrations was investigated in summer 2012 at Cap de la Revellata in Corsica (Calvi, France). Coastal surface water was enclosed in 9 mesocosms and subjected to 6 pCO2 levels (3 replicated controls and 6 perturbations) for approximately one month. No trend was found in response to increasing pCO2 in any of the biological and particulate analyses. Community respiration was relatively stable throughout the experiment in all mesocosms, and net community production was most of the time close to zero. Similarly, POC concentrations were not affected by acidification during the whole experimental period. Such as the global ocean, the Mediterranean Sea has an oligotrophic nature. Based on present results, it seems likely that seawater acidification will not have significant effects on photosynthetic rates, microbial metabolism and carbon transport.
Bacterial production and respiration measured on water bottle samples at time series station DYFAMED
Resumo:
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice-water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 µg C/l/d. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 µg C/l/d. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r**2 = 0.97, P < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.