927 resultados para communication channels
Particle filters for demodulation of M-ary modulated signals in noisy fading communication channels.
Resumo:
The typical behavior of the relay-without-delay channel under low-density parity-check coding and its multiple-unit generalization, termed the relay array, is studied using methods of statistical mechanics. A demodulate-and- forward strategy is analytically solved using the replica symmetric ansatz which is exact in the system studied at Nishimori's temperature. In particular, the typical level of improvement in communication performance by relaying messages is shown in the case of a small and a large number of relay units. © 2007 The American Physical Society.
Resumo:
The exponentially increasing demand on operational data rate has been met with technological advances in telecommunication systems such as advanced multilevel and multidimensional modulation formats, fast signal processing, and research into new different media for signal transmission. Since the current communication channels are essentially nonlinear, estimation of the Shannon capacity for modern nonlinear communication channels is required. This PhD research project has targeted the study of the capacity limits of different nonlinear communication channels with a view to enable a significant enhancement in the data rate of the currently deployed fiber networks. In the current study, a theoretical framework for calculating the Shannon capacity of nonlinear regenerative channels has been developed and illustrated on the example of the proposed here regenerative Fourier transform (RFT). Moreover, the maximum gain in Shannon capacity due to regeneration (that is, the Shannon capacity of a system with ideal regenerators – the upper bound on capacity for all regenerative schemes) is calculated analytically. Thus, we derived a regenerative limit to which the capacity of any regenerative system can be compared, as analogue of the seminal linear Shannon limit. A general optimization scheme (regenerative mapping) has been introduced and demonstrated on systems with different regenerative elements: phase sensitive amplifiers and the proposed here multilevel regenerative schemes: the regenerative Fourier transform and the coupled nonlinear loop mirror.
Resumo:
We prove that, under certain conditions, the capacity of an optical communication channel with in-line, nonlinear filtering (regeneration) elements can be higher than the Shannon capacity for the corresponding linear Gaussian white noise channel. © 2012 Optical Society of America.
Resumo:
This study discusses the importance of establishing trust in post-acquisition integration context and how the use of e-channels facilitates or inhibits this process. The objective of this study is to analyze how the use of electronic communication channels influences the post-acquisition integration process in terms of trust establishment and overall integration efficiency, developing a framework as a result. Three sub-objectives are introduced: to find out the building blocks of trust in M&A’s, to analyse how the use of e-channels influence the process of trust establishment in post-acquisition integration context, and to define the consequences trust and use of e-channels have for the process. The theoretical background of the study includes literature and theories relating to trust establishment in post-acquisition integration context and how the use of e-channels influences the process of trust development on a general level. The empirical research is conducted as a single case study, based on key informant interviews. The interview data was collected between October 2015 and January 2016. Altogether nine interviews were realised; six with representatives from the acquiring firm and three with target firm members. Thematic analysis was selected as the main method for analysing and processing the qualitative data. This study finds that trust has an essential role in post-acquisition integration context, facilitating the integration process in various different ways. Hence, identifying the different building blocks of trust is important in order for members of the organisations to be better able establish and maintain trust. In today’s international business, the role of electronic communication channels has also increased in importance significantly and it was confirmed that these pose both challenges and possibilities for the development of interpersonal trust. One of the most important underlying factors influencing the trust levels via e-communication channels is the level of user’s comfort in using the different e-channels. Without sufficient and meaningful training, the communication conducted via these channels in inhibited in a number of ways. Hence, understanding the defining characteristics of e-communication together with the risks and opportunities related to the use of these can have far-reaching consequences for the post-acquisition integration process as a whole. The framework based on the findings and existing theory introduces the most central factors influencing the trust establishment together with the positive and negative consequences these have for the integration process. Moreover, organizational level consistency and the existence of shared guidelines on appropriate selection of communication channels according to the nature of the task at hand are seen as important
Resumo:
Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized. Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low absorption, high temperature stability, and can be deposited using common processing techniques. Two sizes of waveguides are investigated, 50 $unit{mu m}$ multimode and 4 - 9 $unit{mu m}$ single mode waveguides. A beam propagation method is developed for simulating the multimode and single mode waveguide parameters. The attenuation of simulated multimode waveguides are able to match the attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same process as the multimode waveguides, parameters needed to ensure a low link loss are found for single mode waveguides including maximum size, minimum cladding thickness, minimum waveguide separation, and minimum bend radius. To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal reflection mirror can be found without prior knowledge of the waveguide length. The optimal placement is found to be either 60 µm or 150 µm away from the end of the waveguide depending on which metric a designer wants to optimize the average output power, the output power variance, or the maximum possible power loss. For single mode waveguides a volume grating coupler is designed to couple light from a silicon waveguide to a polymer single mode waveguide. A focusing grating coupler is compared to a perpendicular grating coupler that is focused by a micro-molded lens. The focusing grating coupler had an optical loss of over -14 dB, while the grating coupler with a lens had an optical loss of -6.26 dB.
Resumo:
A communication system model for mutual information performance analysis of multiple-symbol differential M-phase shift keying over time-correlated, time-varying flat-fading communication channels is developed. This model is a finite-state Markov (FSM) equivalent channel representing the cascade of the differential encoder, FSM channel model and differential decoder. A state-space approach is used to model channel phase time correlations. The equivalent model falls in a class that facilitates the use of the forward backward algorithm, enabling the important information theoretic results to be evaluated. Using such a model, one is able to calculate mutual information for differential detection over time-varying fading channels with an essentially finite time set of correlations, including the Clarke fading channel. Using the equivalent channel, it is proved and corroborated by simulations that multiple-symbol differential detection preserves the channel information capacity when the observation interval approaches infinity.
Resumo:
Despite the increased offering of online communication channels to support web-based retail systems, there is limited marketing research that investigates how these channels act singly, or in combination with online channels, to influence an individual' s intention to purchase online. If the marketer's strategy is to encourage online transactions, this requires a focus on consumer acceptance of the web-based transaction technology, rather than the purchase of the products per se. The exploratory study reported in this paper examines normative influences from referent groups in an individual's on and offline social communication networks that might affect their intention to use online transaction facilities. The findings suggest that for non-adopters, there is no normative influence from referents in either network. For adopters, one online and one offline referent norm positively influenced this group's intentions to use online transaction facilities. The implications of these findings are discussed together with future research directions.
Communicating with first year students ; so many channels but is anyone listening? A practice report
Resumo:
Communicating with first year students has become a far more complex prospect in the digital age. There is a lot of competition for limited attentional resources from media sources in almost endless channels. Getting important messages to students when there is so much competing information is a difficult prospect for academic and professional divisions of the university alike. Students’ preferences for these communication channels are not well understood and are constantly changing with the introduction of new technology. A first year group was surveyed about their use and preference for various sources of information. Students were generally positive about the use of social networking and other new online media but strongly preferred more established channels for official academic and administrative information. A discussion of the findings and recommendations follows.
Resumo:
We first classify the state-of-the-art stream authentication problem in the multicast environment and group them into Signing and MAC approaches. A new approach for authenticating digital streams using Threshold Techniques is introduced. The new approach main advantages are in tolerating packet loss, up to a threshold number, and having a minimum space overhead. It is most suitable for multicast applications running over lossy, unreliable communication channels while, in same time, are pertain the security requirements. We use linear equations based on Lagrange polynomial interpolation and Combinatorial Design methods.