976 resultados para combustion turbine


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nyky yhteiskunta tulee päivä päivältä riippuvaisemmaksi sähköstä ja sen luotettavasta siirrosta ja jakelusta. Suurhäiriö kantaverkossa on erittäin epätodennäköinen, mutta sen mahdollisuutta ei koskaan voida kokonaan rajata pois. Suurhäiriön seuraukset ovat erittäin vakavat ja yhteiskäytön palautus häiriön jälkeen voi pitkittyä. Diplomityössä käsitellään kantaverkkoyhtiö Fingrid Oyj:n kaasuturpiinivaravoimalaitoksia ja niiden ominaisuuksia kantaverkon suurhäiriössä. Varavoimalaitosten pimeäkäynnistysvalmiudet tarkastettiin ja niissä suoritettiin koeajoja, jotka sisälsivät jatkuvan ja dynaamisen tilan koeajo osuudet. Yhdessä laitosyksikössä tehtiin myös pimeäkäynnistys ja saarekekoeajo. Koeajojen perusteella saatiin arvokasta perustietoa kaasuturpiinilaitosten ominaisuuksista ja mahdollisuuksista toimia pimeäkäynnistystilanteissa. Varavoimalaitosten matemaattista mallintamista yksinkertaisella teollisuuskaasuturpiinilaitoksen mallilla kokeiltiin siinä kuitenkaan onnistumatta. Kokemusten perusteella esitetään keskeisimmät havainnot ja ehdotukset kevyen, moniakselisen kaasuturpiinilaitoksen mallintamiseksi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Micro-gas turbines are a good alternative for on-site power generation, since their operation is very reliable. The possibility of operating with various fuels increases versatility and, as a result, the usage of these devices. Focusing on a performance improvement of a tri-fuel low-cost micro-gas turbine, this work presents investigations of the inner flow of its combustion chamber. The aim of this analysis was the characterization of the flame structure by the temperature field of the chamber inner flow. The chamber was fuelled with natural gas. In the current chamber, a swirler and a reversed flow configuration were utilized to provide flame stabilization. The inner flow investigations were done with numerical analysis, which were compared to experimental data. The analysis of the inner flow was done with numerical simulations, which used the RSM turbulence model. A β-PDF equilibrium model was adopted to account for the turbulent combustion process. Different models of heat transfer were compared. Thermal radiation and specially heat conduction in the liner walls played significant roles on results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research was to investigate the effects of increasing levels of carbon dioxide addition to the combustion of methane with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new liquid-fuel injector was designed for use in the atmospheric-pressure, model gas turbine combustor in Bucknell University’s Combustion Research Laboratory during alternative fuel testing. The current liquid-fuel injector requires a higher-than-desired pressure drop and volumetric flow rate to provide proper atomization of liquid fuels. An air-blast atomizer type of fuel injector was chosen and an experiment utilizing water as the working fluid was performed on a variable-geometry prototype. Visualization of the spray pattern was achieved through photography and the pressure drop was measured as a function of the required operating parameters. Experimental correlations were used to estimate droplet sizes over flow conditions similar to that which would be experienced in the actual combustor. The results of this experiment were used to select the desired geometric parameters for the proposed final injector design and a CAD model was generated. Eventually, the new injector will be fabricated and tested to provide final validation of the design prior to use in the combustion test apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

v. 1. Thermodynamic properties.--v. 2. Chemical composition of equilibrium mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow in the automotive catalytic converter is, in general, not uniform. This significantly affects cost, service life, and performance, in particular, during cold startup. The current paper reports on a device that provided a large improvement in flow uniformity. The device is to be placed in the converter inlet diffuser and is constructed out of ordinary screens. It is cheap and easy to install. Moreover, the device does not present most of the undesired effects, such as increase in pressure drop and time to light off, often observed in other devices developed for the same purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was conducted on pollutants emitted from steady-state, steady-flow gasification and combustion of polyethylene (PE) in a two-stage furnace. The polymer, in pulverized form, was first pyrolyzed at 1000 degrees C, and subsequently, its gaseous pyrolyzates were burned, upon mixing with air at high temperatures (900-1100 degrees C). The motivation for this indirect type of burning PE was to attain nominally premixed combustion of the pyrolyzate gases with air, thereby achieving lower pollutant emissions than those emanating from the direct burning of the solid PE polymer. This work assessed the effluents of the two-stage furnace and examined the effects of the combustion temperature, as well as the polymer feed rate and the associated fuel/air equivalence ratio (0.3 < phi < 1.4). It was found that, whereas the yield of pyrolysis gas decreased with an increasing polymer feed rate, its composition was nearly independent of the feed rate. CO2 emissions peaked at an equivalence ratio near unity, while the CO emissions increased with an increasing equivalence ratio. The total light volatile hydrocarbon and semivolatile polycyclic aromatic hydrocarbon (PAH) emissions of combustion increased with an increasing equivalence ratio. The generated particulates were mostly submicrometer in size. Overall, PAH and soot emissions from this indirect burning of PE were an order of magnitude lower than corresponding emissions from the direct burning of the solid polymer, obtained previously in this laboratory using identical sampling and analytical techniques. Because pyrolysis of this polymer requires a nominal heat input that amounts to only a diminutive fraction of the heat released during its combustion, implementation of this technique is deemed advantageous.