853 resultados para combustion efficiency


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This manuscript reports the overall development of a Ph.D. research project during the “Mechanics and advanced engineering sciences” course at the Department of Industrial Engineering of the University of Bologna. The project is focused on the development of a combustion control system for an innovative Spark Ignited engine layout. In details, the controller is oriented to manage a prototypal engine equipped with a Port Water Injection system. The water injection technology allows an increment of combustion efficiency due to the knock mitigation effect that permits to keep the combustion phasing closer to the optimal position with respect to the traditional layout. At the beginning of the project, the effects and the possible benefits achievable by water injection have been investigated by a focused experimental campaign. Then the data obtained by combustion analysis have been processed to design a control-oriented combustion model. The model identifies the correlation between Spark Advance, combustion phasing and injected water mass, and two different strategies are presented, both based on an analytic and semi-empirical approach and therefore compatible with a real-time application. The model has been implemented in a combustion controller that manages water injection to reach the best achievable combustion efficiency while keeping knock levels under a pre-established threshold. Three different versions of the algorithm are described in detail. This controller has been designed and pre-calibrated in a software-in-the-loop environment and later an experimental validation has been performed with a rapid control prototyping approach to highlight the performance of the system on real set-up. To further make the strategy implementable on an onboard application, an estimation algorithm of combustion phasing, necessary for the controller, has been developed during the last phase of the PhD Course, based on accelerometric signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The removal of aromatic hydrocarbons from diesel has received considerable attention after environmental regulations that require petroleum refiners to raise cetane number and to limit aromatics in diesel fuel in order to improve combustion efficiency and reduce particulate and NOx emissions. An alternative is blending with Fischer–Tropsch (FT) gas-to-liquid diesel fuel; however, this option may not be economically viable solution in case of extensive blend. Another alternative is to incorporate in the diesel pool a greater fraction of the so-called light cycle oil (LCO). Due to its high aromatics content and its low cetane number (typically between 20 and 30), the incorporation of LCO may have a negative impact on the quality of diesel. Current technologies for LCO improvement are based on hydrogenation to adjust both sulphur and cetane number but while an important fraction of the aromatics present in LCO can be saturated in a deep hydrogenation process, the cetane number may still be lower than the target values specified in diesel legislations, so further upgrading is needed. An interesting technology for improving the cetane number of diesels and maintaining meanwhile high diesel yields is achieved by combining a complete hydrogenation process with a selective ring opening (SRO) reaction of the naphthenic rings. The SRO can be defined as naphthene ring-opening to form compounds with high cetane number, but without any carbon losses. Controlling the interconversion of six- and five- membered rings via an acid-catalyzed ring-contraction step is also of great importance, since selective conversion of six-membered to five-membered naphthene rings greatly influences ring-opening rates and selectivity. High intrinsic activity may be enhanced by deposition of noble metals on acidic, high surface area supports, because it is possible to arrange close proximity of the metal and acid sites. Moreover, in large-pore supports, the diffusion resistance of liquid reactants into the pores is minimized. In addition to metal centres, the acid sites of support also plays role in aromatics hydrogenation. However, the functions of different kinds of acid sites (Brønsted vs. Lewis acidity), and their optimal concentrations and strengths, remain unclear. In the present study we investigated the upgrading of an aromatic-rich feedstock over different type of metal supported on mesoporous silica-alumina. The selective hydrogenolysis and ring opening of tetrahydronaphthalene (THN or tetralin) was carried out as representative of LCO fractions after deep hydrogenation process. In this regards the aim of this study is to evaluate both the effect of metals and that of the supports characterized by different acid distribution and strength, on conversion and selectivity. For this purpose a series of catalysts were prepared by impregnation. The catalysts were characterized and conversion tests of THN were performed in a lab-scale plant operating in the pressure range from 7.0-5.0 MPa and in the temperature range from 300 to 360°C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern Internal Combustion Engines are becoming increasingly complex in terms of their control systems and strategies. The growth of the algorithms’ complexity results in a rise of the number of on-board quantities for control purposes. In order to improve combustion efficiency and, simultaneously, limit the amount of pollutant emissions, the on-board evaluation of two quantities in particular has become essential; namely indicated torque produced by the engine and the angular position where 50% of fuel mass injected over an engine cycle is burned (MFB50). The above mentioned quantities can be evaluated through the measurement of in-cylinder pressure. Nonetheless, at the time being, the installation of in-cylinder pressure sensors on vehicles is extremely uncommon mainly because of measurement reliability and costs. This work illustrates a methodological approach for the estimation of indicated torque and MFB50 that is based on the engine speed fluctuation measurement. This methodology is compatible with the typical on-board application restraints. Moreover, it requires no additional costs since speed can be measured using the system already mounted on the vehicle, which is made of a magnetic pick-up faced to a toothed wheel. The estimation algorithm consists of two main parts: first, the evaluation of indicated torque fluctuation based on speed measurement and secondly, the evaluation of the mean value of the indicated torque (over an engine cycle) and MFB50 by using the relationship with the indicated torque harmonic and other engine quantities. The procedure has been successfully applied to an L4 turbocharged Diesel engine mounted on-board a vehicle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some invasive grasses have been reported to change fire behavior in invaded plant communities. Urochloa brizantha is an aggressive invasive grass in the Brazilian Cerrado, an ecosystem where fire is a common disturbance. We investigated the effects of U. brizantha on fire behavior in an open Cerrado physiognomy in Central Brazil. Using experimental burnings we compared fire behavior at both the community and the individual plant level in invaded (UJ) and non-invaded (NJ) areas burned in July. We also assessed the effect of fire season in invaded areas by comparing July (UJ) and October (UO) burnings. We evaluated the following variables: fuel load, fuel moisture, combustion efficiency, maximum fire temperature, flame height, and fire intensity. Additionally, we evaluated the temperatures reached under invasive and native grass tussocks in both seasons. Fuel load, combustion efficiency, and fire intensity were higher in NJ than in UJ, whilst flame height showed the opposite trend. Fuel amount and fire intensity were higher in October than in July. At the individual plant level, U. brizantha moisture was higher than that of native species, however, temperatures reaching ≥600 °C at ground level were more frequent under U. brizantha tussocks than under native grasses. At the community level, the invasive grass modified fire behavior towards lower intensity, lower burning efficiency, and higher flame height. These results provide essential information for the planning of prescribed burnings in invaded Cerrado areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nos dias que correm a eficiência energética está na ordem do dia, havendo um esforço significativo para obter-se equipamentos cada vez mais eficientes. Uma parte significativa do consumo global de energia, bem como da emissão de gases nocivos e de efeito de estufa, está associado à climatização, quer doméstica quer industrial. Assim, é importante desenvolver tecnologias mais eficientes neste domínio. O principal objetivo deste trabalho consiste no desenvolvimento de um módulo de interface a uma sonda lambda para monitorização de combustão em caldeiras de biomassa. Este módulo permitirá medir a concentração de oxigénio presente na saída das caldeiras, possibilitando o ajuste dinâmico dos parâmetros de combustão por forma a maximizar o seu rendimento e minimizar a emissão de gases poluentes. O módulo desenvolvido é de baixo custo e apresenta uma interface bastante simples, facilitando a sua incorporação em equipamentos já existentes. Os resultados obtidos revelaram-se consistentes com os valores teóricos fornecidos pelo fabricante da sonda utilizada, podendo assim concluir-se que o trabalho foi realizado com sucesso.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental and numerical study of turbulent fire suppression is presented. For this work, a novel and canonical facility has been developed, featuring a buoyant, turbulent, methane or propane-fueled diffusion flame suppressed via either nitrogen dilution of the oxidizer or application of a fine water mist. Flames are stabilized on a slot burner surrounded by a co-flowing oxidizer, which allows controlled delivery of either suppressant to achieve a range of conditions from complete combustion through partial and total flame quenching. A minimal supply of pure oxygen is optionally applied along the burner to provide a strengthened flame base that resists liftoff extinction and permits the study of substantially weakened turbulent flames. The carefully designed facility features well-characterized inlet and boundary conditions that are especially amenable to numerical simulation. Non-intrusive diagnostics provide detailed measurements of suppression behavior, yielding insight into the governing suppression processes, and aiding the development and validation of advanced suppression models. Diagnostics include oxidizer composition analysis to determine suppression potential, flame imaging to quantify visible flame structure, luminous and radiative emissions measurements to assess sooting propensity and heat losses, and species-based calorimetry to evaluate global heat release and combustion efficiency. The studied flames experience notable suppression effects, including transition in color from bright yellow to dim blue, expansion in flame height and structural intermittency, and reduction in radiative heat emissions. Still, measurements indicate that the combustion efficiency remains close to unity, and only near the extinction limit do the flames experience an abrupt transition from nearly complete combustion to total extinguishment. Measurements are compared with large eddy simulation results obtained using the Fire Dynamics Simulator, an open-source computational fluid dynamics software package. Comparisons of experimental and simulated results are used to evaluate the performance of available models in predicting fire suppression. Simulations in the present configuration highlight the issue of spurious reignition that is permitted by the classical eddy-dissipation concept for modeling turbulent combustion. To address this issue, simple treatments to prevent spurious reignition are developed and implemented. Simulations incorporating these treatments are shown to produce excellent agreement with the experimentally measured data, including the global combustion efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the Ph.D. research project was to explore Dual Fuel combustion and hybridization. Natural gas-diesel Dual Fuel combustion was experimentally investigated on a 4-Stroke, 2.8 L, turbocharged, light-duty Diesel engine, considering four operating points in the range between low to medium-high loads at 3000 rpm. Then, a numerical analysis was carried out using a customized version of the KIVA-3V code, in order to optimize the diesel injection strategy of the highest investigated load. A second KIVA-3V model was used to analyse the interchangeability between natural gas and biogas on an intermediate operating point. Since natural gas-diesel Dual Fuel combustion suffers from poor combustion efficiency at low loads, the effects of hydrogen enriched natural gas on Dual Fuel combustion were investigated using a validated Ansys Forte model, followed by an optimization of the diesel injection strategy and a sensitivity analysis to the swirl ratio, on the lowest investigated load. Since one of the main issues of Low Temperature Combustion engines is the low power density, 2-Stroke engines, thanks to the double frequency compared to 4-Stroke engines, may be more suitable to operate in Dual Fuel mode. Therefore, the application of gasoline-diesel Dual Fuel combustion to a modern 2-Stroke Diesel engine was analysed, starting from the investigation of gasoline injection and mixture formation. As far as hybridization is concerned, a MATLAB-Simulink model was built to compare a conventional (combustion) and a parallel-hybrid powertrain applied to a Formula SAE race car.