952 resultados para combining forecasts
Resumo:
This paper combines multivariate density forecasts of output growth, inflationand interest rates from a suite of models. An out-of-sample weighting scheme based onthe predictive likelihood as proposed by Eklund and Karlsson (2005) and Andersson andKarlsson (2007) is used to combine the models. Three classes of models are considered: aBayesian vector autoregression (BVAR), a factor-augmented vector autoregression (FAVAR)and a medium-scale dynamic stochastic general equilibrium (DSGE) model. Using Australiandata, we find that, at short forecast horizons, the Bayesian VAR model is assignedthe most weight, while at intermediate and longer horizons the factor model is preferred.The DSGE model is assigned little weight at all horizons, a result that can be attributedto the DSGE model producing density forecasts that are very wide when compared withthe actual distribution of observations. While a density forecast evaluation exercise revealslittle formal evidence that the optimally combined densities are superior to those from thebest-performing individual model, or a simple equal-weighting scheme, this may be a resultof the short sample available.
Resumo:
We consider forecasting using a combination, when no model coincides with a non-constant data generation process (DGP). Practical experience suggests that combining forecasts adds value, and can even dominate the best individual device. We show why this can occur when forecasting models are differentially mis-specified, and is likely to occur when the DGP is subject to location shifts. Moreover, averaging may then dominate over estimated weights in the combination. Finally, it cannot be proved that only non-encompassed devices should be retained in the combination. Empirical and Monte Carlo illustrations confirm the analysis.
Resumo:
A combinação de previsões é caracterizada pelo aumento da precisão de prognósticos decorrente da complementaridade da informação contida nas previsões individuais. Este trabalho parte das idéias do consagrado artigo de Bates e Granger (1969) com o objetivo de investigar se há como elevar a precisão de previsões de índices de preços. Há evidências de que, embora os ganhos da combinação sejam limitados, os riscos decorrentes da combinação são menores que seus benefícios.
Resumo:
Combining forecast is characterized by an improvement in the accuracy of the prognoses due to the complementarity of the information contained in individual forecasts. This paper follows the seminal work of Bates and Granger (1969) with the objective of investigating whether room exists to improve the accuracy in price index forecasts. There is evidence that even though the gains in combining forecasts are limited, the risks incurred from combining forecasts are less than the benefits gained.
Resumo:
We consider different methods for combining probability forecasts. In empirical exercises, the data generating process of the forecasts and the event being forecast is not known, and therefore the optimal form of combination will also be unknown. We consider the properties of various combination schemes for a number of plausible data generating processes, and indicate which types of combinations are likely to be useful. We also show that whether forecast encompassing is found to hold between two rival sets of forecasts or not may depend on the type of combination adopted. The relative performances of the different combination methods are illustrated, with an application to predicting recession probabilities using leading indicators.
Resumo:
Publicado em "AIP Conference Proceedings", Vol. 1648
Resumo:
The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradient is subject to the interplay of biotic interactions in complement to abiotic environmental filtering. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose to use food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve both species distribution and community forecasts. Most importantly, this combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may be recurrent. Our combined approach points a promising direction forward to model the spatial variation of entire species interaction networks. Our work has implications for studies of range shifting species and invasive species biology where it may be unknown how a given biota might interact with a potential invader or in future climate.
Resumo:
Given a nonlinear model, a probabilistic forecast may be obtained by Monte Carlo simulations. At a given forecast horizon, Monte Carlo simulations yield sets of discrete forecasts, which can be converted to density forecasts. The resulting density forecasts will inevitably be downgraded by model mis-specification. In order to enhance the quality of the density forecasts, one can mix them with the unconditional density. This paper examines the value of combining conditional density forecasts with the unconditional density. The findings have positive implications for issuing early warnings in different disciplines including economics and meteorology, but UK inflation forecasts are considered as an example.
Resumo:
In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.
Resumo:
This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.
Resumo:
Using the wisdom of crowds---combining many individual forecasts to obtain an aggregate estimate---can be an effective technique for improving forecast accuracy. When individual forecasts are drawn from independent and identical information sources, a simple average provides the optimal crowd forecast. However, correlated forecast errors greatly limit the ability of the wisdom of crowds to recover the truth. In practice, this dependence often emerges because information is shared: forecasters may to a large extent draw on the same data when formulating their responses.
To address this problem, I propose an elicitation procedure in which each respondent is asked to provide both their own best forecast and a guess of the average forecast that will be given by all other respondents. I study optimal responses in a stylized information setting and develop an aggregation method, called pivoting, which separates individual forecasts into shared and private information and then recombines these results in the optimal manner. I develop a tailored pivoting procedure for each of three information models, and introduce a simple and robust variant that outperforms the simple average across a variety of settings.
In three experiments, I investigate the method and the accuracy of the crowd forecasts. In the first study, I vary the shared and private information in a controlled environment, while the latter two studies examine forecasts in real-world contexts. Overall, the data suggest that a simple minimal pivoting procedure provides an effective aggregation technique that can significantly outperform the crowd average.
Resumo:
The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
The solvent effects on the low-lying absorption spectrum and on the (15)N chemical shielding of pyrimidine in water are calculated using the combined and sequential Monte Carlo simulation and quantum mechanical calculations. Special attention is devoted to the solute polarization. This is included by an iterative procedure previously developed where the solute is electrostatically equilibrated with the solvent. In addition, we verify the simple yet unexplored alternative of combining the polarizable continuum model (PCM) and the hybrid QM/MM method. We use PCM to obtain the average solute polarization and include this in the MM part of the sequential QM/MM methodology, PCM-MM/QM. These procedures are compared and further used in the discrete and the explicit solvent models. The use of the PCM polarization implemented in the MM part seems to generate a very good description of the average solute polarization leading to very good results for the n-pi* excitation energy and the (15)N nuclear chemical shield of pyrimidine in aqueous environment. The best results obtained here using the solute pyrimidine surrounded by 28 explicit water molecules embedded in the electrostatic field of the remaining 472 molecules give the statistically converged values for the low lying n-pi* absorption transition in water of 36 900 +/- 100 (PCM polarization) and 36 950 +/- 100 cm(-1) (iterative polarization), in excellent agreement among one another and with the experimental value observed with a band maximum at 36 900 cm(-1). For the nuclear shielding (15)N the corresponding gas-water chemical shift obtained using the solute pyrimidine surrounded by 9 explicit water molecules embedded in the electrostatic field of the remaining 491 molecules give the statistically converged values of 24.4 +/- 0.8 and 28.5 +/- 0.8 ppm, compared with the inferred experimental value of 19 +/- 2 ppm. Considering the simplicity of the PCM over the iterative polarization this is an important aspect and the computational savings point to the possibility of dealing with larger solute molecules. This PCM-MM/QM approach reconciles the simplicity of the PCM model with the reliability of the combined QM/MM approaches.