876 resultados para colour Doppler ultrasound
Resumo:
We assessed whether quantitative analysis of Doppler flow velocity waveforms is able to identify subclinical microvascular abnormalities in SLE and whether eigenvector analysis can detect changes not detectable using the resistive index (RI). Fifty-four SLE patients with no conventional cardiovascular risk factors, major organ involvement or retinopathy were compared to 32 controls. Flow velocity waveforms were obtained from the ophthalmic artery (OA), central retinal artery (CRA) and common carotid artery (CA). The waveforms were analysed using eigenvector decomposition and compared between groups at each arterial site. The RI was also determined. The RI was comparable between groups. In the OA and CRA, there were significant differences in the lower frequency sinusoidal components (P <0.05 for each component). No differences were apparent in the CA between groups. Eigenvector analysis of Doppler flow waveforms, recorded in proximity of the terminal vascular bed, identified altered ocular microvascular haemodynamics in SLE. Altered waveform structure could not be identified by changes in RI, the traditional measure of downstream vascular resistance. This analytical approach to waveform analysis is more sensitive in detecting preclinical microvascular abnormalities in SLE. It may hold potential as a useful tool for assessing disease activity, response to treatment, and predicting future vascular complications.
Resumo:
Cord entanglement affects the majority of monoamniotic (MA) twins, accounting for the high proportion of intrauterine deaths of MA twins, and it is often present from early gestation. 3D ultrasound can be used to acquire volume data comprising information on umbilical colour Doppler flow, providing a very graphic depiction of cord entanglement. We have used 2D, "conventional" and a novel 3D display of colour Doppler ultrasound showing cord entanglement.
Resumo:
The purpose of this study was to demonstrate the improvement in diagnostic quality and diagnostic accuracy of SonoVue microbubble contrast-enhanced ultrasound (CE-US) versus unenhanced ultrasound imaging during the investigation of extracranial carotid or peripheral arteries. 82 patients with suspected extracranial carotid or peripheral arterial disease received four SonoVue doses (0.3 ml, 0.6 ml, 1.2 ml and 2.4 ml) with Doppler ultrasound performed before and following each dose. Diagnostic quality of the CE-US examinations was evaluated off-site for duration of clinically useful contrast enhancement, artefact effects and percentage of examinations converted from non-diagnostic to diagnostic. Accuracy, sensitivity and specificity were assessed as agreement of CE-US diagnosis evaluated by an independent panel of experts with reference standard modality. The median duration of clinically useful signal enhancement significantly increased with increasing SonoVue doses (p< or =0.002). At the dose of 2.4 ml of SonoVue, diagnostic quality evaluated as number of inconclusive examinations significantly improved, falling from 40.7% at baseline down to 5.1%. Furthermore, SonoVue significantly (p<0.01) increased the accuracy, sensitivity and specificity of assessment of disease compared with baseline ultrasound. SonoVue increases the diagnostic quality of Doppler images and improves the accuracy of both spectral and colour Doppler examinations of extracranial carotid or peripheral arterial disease.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wavelet entropy assesses the degree of order or disorder in signals and presents this complex information in a simple metric. Relative wavelet entropy assesses the similarity between the spectral distributions of two signals, again in a simple metric. Wavelet entropy is therefore potentially a very attractive tool for waveform analysis. The ability of this method to track the effects of pharmacologic modulation of vascular function on Doppler blood velocity waveforms was assessed. Waveforms were captured from ophthalmic arteries of 10 healthy subjects at baseline, after the administration of glyceryl trinitrate (GTN) and after two doses of N(G)-nitro-L-arginine-methyl ester (L-NAME) to produce vasodilation and vasoconstriction, respectively. Wavelet entropy had a tendency to decrease from baseline in response to GTN, but significantly increased after the administration of L-NAME (mean: 1.60 ± 0.07 after 0.25 mg/kg and 1.72 ± 0.13 after 0.5 mg/kg vs. 1.50 ± 0.10 at baseline, p < 0.05). Relative wavelet entropy had a spectral distribution from increasing doses of L-NAME comparable to baseline, 0.07 ± 0.04 and 0.08 ± 0.03, respectively, whereas GTN had the most dissimilar spectral distribution compared with baseline (0.17 ± 0.08, p = 0.002). Wavelet entropy can detect subtle changes in Doppler blood velocity waveform structure in response to nitric-oxide-mediated changes in arteriolar smooth muscle tone.
Resumo:
Evaluation of blood-flow Doppler ultrasound spectral content is currently performed on clinical diagnosis. Since mean frequency and bandwidth spectral parameters are determinants on the quantification of stenotic degree, more precise estimators than the conventional Fourier transform should be seek. This paper summarizes studies led by the author in this field, as well as the strategies used to implement the methods in real-time. Regarding stationary and nonstationary characteristics of the blood-flow signal, different models were assessed. When autoregressive and autoregressive moving average models were compared with the traditional Fourier based methods in terms of their statistical performance while estimating both spectral parameters, the Modified Covariance model was identified by the cost/benefit criterion as the estimator presenting better performance. The performance of three time-frequency distributions and the Short Time Fourier Transform was also compared. The Choi-Williams distribution proved to be more accurate than the other methods. The identified spectral estimators were developed and optimized using high performance techniques. Homogeneous and heterogeneous architectures supporting multiple instruction multiple data parallel processing were essayed. Results obtained proved that real-time implementation of the blood-flow estimators is feasible, enhancing the usage of more complex spectral models on other ultrasonic systems.
Resumo:
Enthesitis is the hallmark of spondyloarthritis and is observed in all subtypes. Namely, a wide information on spondyloarthritis abnormalities, including synovitis, bursitis, tendinitis, enthesitis and cortical bone abnormalities (erosions and enthesophytes), can be efficiently perceived by ultrasound power Doppler. Furthermore, several studies on imaging of enthesis showed that imaging techniques are better than clinical examination to detect pathology at asymptomatic enthesis. Vascularized enthesitis detected by ultrasound power Doppler appears to be a valuable diagnostic tool to confirm spondyloarthritis diagnosis. This article focuses on the validity and reliability of ultrasound enthesitis assessment in the management of spondyloarthritis patients.
Resumo:
RESUMO: Enthesitis is the hallmark of spondyloarthritis (SpA), and is observed in all subtypes. Wide information on SpA abnormalities, including synovitis, tendinitis and enthesitis, can be efficiently perceived by Doppler ultrasound. Furthermore, several studies on imaging of enthesis showed that imaging techniques are better than clinical examination to detect enthesis alterations; and vascularized enthesitis detected by Doppler ultrasound appears to be a valuable diagnostic tool to confirm SpA diagnosis. However, data published until now concerning entheseal elementary alterations that characterize SpA enthesitis (enthesis inflammatory activity) or enthesopathy (permanent structural changes) reflect rather the authors’ empiric opinion than a methodological validation process. In this sense it seems crucial to identify elementary entheseal lesions associated with activity or damage, in order to improve monitoring and treatment response in SpA patients. The development of better assessment tools is today a challenge and a need in SpA. The first study of this thesis focused on the analysis of the reliability of inter-lector and inter-ultrasonography equipment of Madrid sonography enthesitis index (MASEI). Fundamental data for the remaining unrolling project validity. In the second and third studies we concerned about two entheseal elemental lesions: erosions and bursa. In literature erosions represent a permanent structural damage, being useful for monitoring joint injury, disease activity and therapeutic response in many rheumatic diseases; and to date, this concept has been mostly applied in rheumatoid arthritis (RA). Unquestionably, erosion is a tissue-related damage and a structural change. However, the hypothesis that we decided to test was if erosions represent a permanent structural change that can only grow and worsen over time, as occurs in RA, or a transitory alteration. A longitudinal study of early SpA patients was undertaken, and the Achilles enthesis was used as a model. Our results strongly suggested that previously detected erosions could disappear during the course of the disease, being consistent with the dynamic behavior of erosion over time. Based on these striking results it seems reasonable to suggest that the new-bone formation process in SpA could be associated with the resolution of cortical entheseal erosion over time. These results could also be in agreement with the apparent failure of anti-tumor necrosis factor (TNF) therapies to control bone proliferation in SpA; and with the relation of TNF-α, Dickkopf-related protein 1 (Dkk-1) and the regulatory molecule of the Wnt signaling pathway in the bone proliferation in SpA. In the same model, we then proceeded to study the enthesis bursa. Interestingly, the Outcome Measures in Rheumatology Clinical Trials (OMERACT) enthesopathy definition does not include bursa as an elementary entheseal lesion. Nonetheless, bursa was included in 46% of the enthesis studies in a recently systematic literature review, being in agreement with the concept of “synovio-entheseal complex” that includes the link between enthesitis and osteitis in SpA. It has been clarified in recent data that there is not only a close functional integration of the enthesis with the neighboring bone, but also a connection between enthesitis and synovitis. Therefore, we tried to assess the prevalence and relevance of the bursa-synovial lesion in SpA. Our findings showed a significant increase of Achilles bursa presence and thickness in SpA patients compared to controls (healthy/mechanical controls and RA controls). These results raise awareness to the need to improve the enthesopathy ultrasonographic definition. In the final work of this thesis, we have explored new perspectives, not previously reported, about construct validity of enthesis ultrasound as a possible activity outcome in SpA. We performed a longitudinal Achilles enthesis ultrasound study in patients with early SpA. Achilles ultrasound examinations were performed at baseline, six- and twelve-month time periods and compared with clinical outcome measures collected at basal visit. Our results showed that basal erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are higher in patients with Doppler signal in enthesis, and even that higher basal ESR, CRP and Ankylosing Spondylitis Disease Activity Score (ASDAS) predicted a higher Doppler signal (an ultrasound alteration accepted as representative of inflammation) six months later. Patients with very high disease activity assessed by ASDAS (>3.5) at baseline had significantly higher Achilles total ultrasound score verified at the same time; and ASDAS <1.3 predicted no Doppler signal at six and twelve months. This seems to represent a connection between classical biomarkers and clinical outcomes associated with SpA activity and Doppler signal, not only at the same time, but also for the following months. Remarkably, patients with inactive disease (ASDAS < 1.3) at baseline had no Doppler signal at six and twelve months. These findings reinforce the potential use of ultrasound related techniques for disease progression assessment and prognosis purposes. Intriguingly, Ankylosing Spondylitis Disease Activity Index (BASDAI) didn’t show significant differences between different cut-offs concerning ultrasound lesions or Doppler signal, while verified with ASDAS. These results seem to indicate that ASDAS reflects better than BASDAI what happens in the enthesis. The work herein discussed clearly shows the potential utility of ultrasound in enthesis assessment in SpA patients, and can be important for the development of ultrasound activity and structural damage scores for diagnosis and monitoring purposes. Therefore, local promotion of this technique constitutes a medical intervention that is worth being tested in SpA patients for diagnosis, monitoring and prognosis purposes.
Resumo:
Les diagnostics cliniques des maladies cardio-vasculaires sont principalement effectués à l’aide d’échographies Doppler-couleur malgré ses restrictions : mesures de vélocité dépendantes de l’angle ainsi qu’une fréquence d’images plus faible à cause de focalisation traditionnelle. Deux études, utilisant des approches différentes, adressent ces restrictions en utilisant l’imagerie à onde-plane, post-traitée avec des méthodes de délai et sommation et d’autocorrélation. L’objectif de la présente étude est de ré-implémenté ces méthodes pour analyser certains paramètres qui affecte la précision des estimations de la vélocité du flux sanguin en utilisant le Doppler vectoriel 2D. À l’aide d’expériences in vitro sur des flux paraboliques stationnaires effectuées avec un système Verasonics, l’impact de quatre paramètres sur la précision de la cartographie a été évalué : le nombre d’inclinaisons par orientation, la longueur d’ensemble pour les images à orientation unique, le nombre de cycles par pulsation, ainsi que l’angle de l’orientation pour différents flux. Les valeurs optimales sont de 7 inclinaisons par orientation, une orientation de ±15° avec 6 cycles par pulsation. La précision de la reconstruction est comparable à l’échographie Doppler conventionnelle, tout en ayant une fréquence d’image 10 à 20 fois supérieure, permettant une meilleure caractérisation des transitions rapides qui requiert une résolution temporelle élevée.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Ultrasound Doppler is a new technology that has recently been used in large animal reproduction. As the conventional ultrasound (B-mode) it is a noninvasive technique, but with the advantage of allows the assessment of the hemodynamic of reproductive tract in real time. The observation of important features of the vascularization and changes that occur during physiological processes that were not previously seen on B-mode encourage a reassessment of the concepts already established on the events of the reproductive physiology of animals and their applications. Review: In attempt to re-understand the equine reproductive physiology and finding practical uses to this new technique, authors showed that, during the follicular deviation, features are observed by Doppler before being observed under B-mode ultrasound like changes in the speed of the blood flow two days before deviation of the follicle size and one day before the increase in blood flow area of the follicular wall. According to another study ovulation is characterized by a decreased blood flow of the follicular wall in the last four hours preceding it, as well as the serration of the granulosa layer and formation of a non vascularized apex, but in our ongoing study, the ability to decrease the vascularity was not found. Very vascularized follicles are associated with higher rates of oocyte maturation and pregnant that does less vascularized follicles in the preovulatory phase. Those follicles that have septated evacuation (or prolonged) showed more vascularization and serration of the granulosa one hour before ovulation than follicles that ovulate normally, and this vascularization includes the apex of the follicle, the follicular wall portion that is not vascularized in normal ovulation. Another study reported that hemorrhagic follicles have better vascularization of the follicular wall on the days preceding ovulation than follicles destined to ovulate. Some authors also showed that anovulatory follicles grow in size at the same rate as ovulatory follicles, but the percentage of vascularization of its wall is much smaller at 35 mm. Another study characterized that the vascular wall of the follicle that results in the first ovulation of the year is much smaller on the day before ovulation than the number of vessels present in a follicle that will ovulate in the middle of the breeding season. In these cases, the use of Doppler ultrasound can help to prevent economic losses as insemination of mares in cycles that are not able of resulting in pregnancy. This review aims to gather the information found in the literature about the characteristics of follicular hemodynamic of mares taking into account moments of deviation in follicle size, ovulation, ovulation failure and follicular viability. Conclusion: The Doppler technology has the potential to provide important information about the follicular environment and thus be used in practice in search of the perfect equine reproductive management, achieving better utilization of genetic material and increasing the financial return. The use of this new tool opens a large area for several interesting studies that will contribute to the knowledge of the physiological events of the mare for that this technique can soon be effectively applied.
Resumo:
Ultrasound (B-mode) was used to analyze follicular events in 12 trained female owl monkeys (Aotus azarai infulatus). The animals were examined every 48 hours for over 90days to measure and map follicular growth in both ovaries and to measure (using Doppler velocimetry) local hemodynamic changes during the peri-ovulatory stage. There were 44 follicular growth events, each with two or three follicular waves, and a mean ± SEM interval between events of 17 ± 1.13 days. There were various hemodynamic changes during follicular growth; both vascular resistance index and pulsatility index decreased during the time when the follicle diameter peaked. Thus, both B-mode and Doppler ultrasound were useful for monitoring ovarian follicular events in owl monkeys. © 2013 Elsevier Inc.