988 resultados para colorectal cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancers exhibit a high telomerase activity, usually correlated with the hypermethylation of the promoter of its hTERT catalytic subunit. Although telomerase is not expressed in normal tissue, certain proliferative somatic cells such as intestinal crypt cells have demonstrated telomerase activity. The aim of this study was to determine whether a correlation exists between telomerase activity, levels of hTERT methylation and telomere length in tumoral and normal colorectal tissues. Tumor, transitional and normal tissues were obtained from 11 patients with a colorectal cancer. After bisulfite modification of genomic DNA, hTERT promoter methylation was analyzed by methylation-sensitive single-strand conformation analysis (MS-SSCA). Telomerase activity and telomere length were measured by a fluorescent-telomeric repeat amplification protocol assay and by Southern blotting, respectively. A significant increase of hTERT methylation and telomerase activity, and a reduction of the mean telomere length were observed in the tumor tissues compared to the transitional and normal mucosa. In the transitional and normal mucosa, telomerase activity was significantly lower than that in tumor tissues, even with high levels of hTERT methylation. Nevertheless, hTERT promoter methylation was not linearly correlated to telomerase activity. These data indicate that hTERT promoter methylation is a necessary event for hTERT expression, as is telomerase activity. However, methylation is not sufficient for hTERT activation, particularly in normal colorectal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells usually lose adhesion and increase proliferation and migration during malignant transformation. Here, we studied how proliferation can affect the other two characteristics, which ultimately lead to invasion and metastasis. We determined the expression of ß1 integrins, as well as adhesion and migration towards laminin-1, fibronectin, collagens type I and type IV presented by LISP-1 colorectal cancer cells exposed to 2.5% dimethyl sulfoxide (DMSO), an agent capable of decreasing proliferation in this poorly differentiated colorectal cell line. Untreated cells (control), as shown by flow cytometry and monoclonal antibodies, expressed alpha2 (63.8 ± 11.3% positive cells), alpha3 (93.3 ± 7.0%), alpha5 (50.4 ± 12.0%) and alpha6 (34.1 ± 4.9%) integrins but not alpha1, alpha4, alphav or ß4. Cells adhered well to laminin-1 (73.4 ± 6.0%) and fibronectin (40.0 ± 2.0%) substrates but very little to collagens. By using blocking monoclonal antibodies, we showed that alpha2, alpha3 and alpha6 mediated laminin-1 adhesion, but neither alpha3 nor alpha5 contributed to fibronectin adherence. DMSO arrested cells at G0/G1 (control: 55.0 ± 2.4% vs DMSO: 70.7 ± 2.5%) while simultaneously reducing alpha5 (24.2 ± 19%) and alpha6 (14.3 ± 10.8%) expression as well as c-myc mRNA (7-fold), the latter shown by Northern blotting. Although the adhesion rate did not change after exposure to DMSO, alpha3 and alpha5 played a major role in laminin-1 and fibronectin adhesion, respectively. Migration towards laminin-1, which was clearly increased upon exposure to DMSO (control: 6 ± 2 cells vs DMSO: 64 ± 6 cells), was blocked by an antibody against alpha6. We conclude that the effects of DMSO on LISP-1 proliferation were accompanied by concurrent changes in the expression and function of integrins, consequently modulating adhesion/migration, and revealing a complex interplay between function/expression and the proliferative state of cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the BRAF oncogene have been identified as a tumor-initiating genetic event in mainly melanoma, thyroid and colon cancer, resulting in an initial proliferative stimulus that is followed by a growth arrest period known as oncogene-induced senescence (OIS). It remains unknown what triggers subsequent escape from OIS to allow further tumor progression. A previous analysis revealed that overexpression of splice variant Rac1b occurs in around 80% of colorectal tumors carrying a mutation in BRAF. Using both BRaf-V600E-directed RNAi and overexpression we demonstrate that this mutation does not directly lead to Rac1b overexpression, indicating the latter as an independent event during tumor progression. Nonetheless, we observed that expression of oncogenic BRaf-V600E in non-transformed colonocytes (NCM460 cell line) increased both the transcript and protein levels of p14ARF, p15INK4b and p21CIP1 and led to increased expression of β-galactosidase, all indicators of OIS induction. Interestingly, whereas the protein levels of these markers were reduced upon Rac1b overexpression, the levels of their respective transcripts remained unchanged. Importantly, the co-expression of Rac1b with B-Raf-V600E reverted the OIS phenotype, reducing the expression levels of the cell-cycle inhibitors and β-galactosidase to those of control cells. These data identify increased Rac1b expression as one potential mechanism by which colorectal tumor cells can escape from B-Raf-induced OIS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Alternative splicing of the small GTPase RAC1 generates RAC1b, a hyperactivated variant that is overexpressed in a subtype of colorectal tumors. The objective of our studies is to understand the molecular regulation of this alternative splicing event and how it contributes to tumorigenesis. Experimental description: The regulation of the RAC1b splicing event in human colon cell lines was dissected using a transfected RAC1 minigene and the role of upstream regulating protein kinases through an RNA interference approach. The functional properties of the RAC1b protein were characterized by experimental modulation of Rac1b levels in colon cell lines. Results: The RAC1b protein results from an in-frame inclusion of an additional alternative exon encoding 19 amino acids that change the regulation and signaling properties of the protein. RAC1b is a hyperactive variant that exists predominantly in the GTP-bound active conformation in vivo and promotes cell cycle progression and cell survival through activation of the transcription factor NF-κB. RAC1b overexpression functionally cooperates with the oncogenic mutation in BRAF-V600E to sustain colorectal tumor cell survival. The splicing factor SRSF1 was identified to bind an exonic splice enhancer element in the alternative exon and acts as a prime regulator of Rac1b alternative splicing in colorectal cells. SRSF1 is controlled by upstream protein kinase SRPK1, the inhibition or depletion of which led to reduced SRSF1 phosphorylation and nuclear translocation with a concomitant reduction in RAC1b levels. As further SRSF1-regulating pathways we discovered kinase GSK3 and a cyclooxygenase independent effect of the non-steroidal anti-inflammatory drug ibuprofen. Conclusions: Expression of tumor-related RAC1b in colorectal cancer depends critically on SRSF1 for the observed deregulation of alternative splicing during tumorigenesis and is controlled by upstream protein kinases that can be pharmacologically targeted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Bildung von Metastasen und Rezidiven stellt ein großes Problem für eine erfolgreiche Therapie solider maligner Tumoren dar. Dabei ist die Rolle der angewendeten Therapiever-fahren in der Induktion metastasierender Zellen vor allem für eine Schwerionentherapie noch weitestgehend unklar. Die für die Metastasierung entscheidende Tumorzellmigration wurde daher unter dem Einfluss von Röntgen- und Schwerionenstrahlung untersuchen. Dazu wurden drei humane Tumorzelllinien (Gliomzelllinie U87 und kolorektale Zelllinien HCT116 und HCT116 p21-/-) unter standardisierten Bedingungen in einer Boydenkammer direkt und 24 Stunden nach Bestrahlung in vitro auf ihr Migrationsverhalten untersucht. Um mögliche Än-derungen migrationsrelevanter Proteine zu bestimmen, wurden zu denselben Zeitpunkten Zelllysate hergestellt und die Expression der Integrine b1 und b3 sowie der Proteinkinase B Isoformen Akt1 und Akt2 und deren Phosphorylierung untersucht. Gezeigt werden konnten sowohl zelllinien- als auch strahlenspezifische Unterschiede in der Migration und der Proteinexpressionen. Dabei konnten die beobachteten Migrationsänderungen nur zum Teil (vor allem nach Röntgenbestrahlung) durch die veränderte Expressionen der untersuchten Proteine erklärt werden. Daher ist zu vermuten, dass den strahleninduzierten Veränderungen der Migration der verwendeten Zelllinien verschiedene Mechanis-men zugrunde liegen, die auf der Expression unterschiedlicher Proteine beruhen. Bestrahlungen mit 12C-Ionen scheinen prinzipiell andere Expressionsmuster zu induzieren als konventionelle Strahlung und die hier untersuchten Proteine in der Migration der Zellen daher nur eine untergeordnete Rolle zu spielen. Auffällig waren die deutlich zelllinienspezifischen Unterschiede in der Migration nach Röntgenbestrahlung. Dort wurde ein zum Teil erhöhtes Migrationspotential nach klinisch relevanten Bestrahlungsdosen von U87 Gliomzellen festgestellt. Die Migrationsaktivität von kolorektalen Zelllinien hingegen nahm nach Bestrahlung ab. Nach Schwerionenbestrahlung wurden für alle Zelllinien signifikante Abnahmen der Migration festgestellt. Die hier erhaltenen Ergebnisse können aufgrund einer Vielzahl pro- und antimigratorischer Signale im Tumorgewebe nicht direkt in die in vivo Situation übertragen werden, doch können sie durchaus als Hinweise für die Abschätzung eines veränderten Metastasierungsrisikos dienen. Für kolorektale Zellen, unabhängig von ihrem p21-Status scheint eine Behandlung mit Röntgenstrahlen eher nicht mit einem erhöhten Migrationsrisiko einherzugehen. Anders ist dies bei den hier untersuchten Gliomzellen U87. Hier kann ein strahleninduziertes Metastasierungsrisiko aufgrund der erzielten Ergebnisse keinesfalls ausgeschlossen werden. Aus dieser Sicht scheint eine Behandlung von Gliomen mit 12C-Ionen vorteilhafter, da eine sehr gute reproduzierbare strahlenvermittelte Migrationshemmung beobachtet wurde.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure shows that different amino acids substituted at the codon 12 position influences how KRas interacts with its effecters. In the absence of a direct inhibitor of mutant KRas several agents have recently entered clinical trials alone and in combination directly targeting two of the common downstream effecter pathways of KRas, namely the Mapk pathway and the Akt pathway. These inhibitors were evaluated for efficacy against different KRAS activating mutations. An isogenic panel of colorectal cells with wild type KRas replaced with KRas G12C, G12D, or G12V at the endogenous loci differed in sensitivity to Mek and Akt inhibition. In contrast, screening was performed in a broad panel of lung cell lines alone and no correlation was seen between types of activating KRAS mutation due to concurrent oncogenic lesions. To find a new method to inhibit KRAS driven tumors, siRNA screens were performed in isogenic lines with and without active KRas. The knockdown of CNKSR1 (CNK1) showed selective growth inhibition in cells with an oncogenic KRAS. The deletion of CNK1 reduces expression of mitotic cell cycle proteins and arrests cells with active KRas in the G1 phase of the cell cycle similar to the deletion of an activated KRas regardless of activating substitution. CNK1 has a PH domain responsible for localizing it to membrane lipids making KRas potentially amenable to inhibition with small molecules. The work has identified a series of small molecules capable of binding to this PH domain and inhibiting CNK1 facilitated KRas signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer cells rely mostly on glycolysis to meet their energetic demands, producing large amounts of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). The role of MCTs in the survival of colorectal cancer (CRC) cells is scarce and poorly understood. In this study, we aimed to better understand this issue and exploit these transporters as novel therapeutic targets alone or in combination with the CRC classical chemotherapeutic drug 5-Fluorouracil. For that purpose, we characterized the effects of MCT activity inhibition in normal and CRC derived cell lines and assessed the effect of MCT inhibition in combination with 5-FU. Here, we demonstrated that MCT inhibition using CHC (a-cyano-4-hydroxycinnamic acid), DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and quercetin decreased cell viability, disrupted the glycolytic phenotype, inhibited proliferation and enhanced cell death in CRC cells. These results were confirmed by specific inhibition of MCT1/4 by RNA interference. Notably, we showed that 5-FU cytotoxicity was potentiated by lactate transport inhibition in CRC cells, either by activity inhibition or expression silencing. These findings provide novel evidence for the pivotal role of MCTs in CRC maintenance and survival, as well as for the use of these transporters as potential new therapeutic targets in combination with CRC conventional therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. CatD inhibitors could therefore enhance acetate-mediated cancer cell death, presenting a novel strategy for prevention or therapy of CRC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Early detection and treatment of colorectal adenomatous polyps (AP) and colorectal cancer (CRC) is associated with decreased mortality for CRC. However, accurate, non-invasive and compliant tests to screen for AP and early stages of CRC are not yet available. A blood-based screening test is highly attractive due to limited invasiveness and high acceptance rate among patients. AIM: To demonstrate whether gene expression signatures in the peripheral blood mononuclear cells (PBMC) were able to detect the presence of AP and early stages CRC. METHODS: A total of 85 PBMC samples derived from colonoscopy-verified subjects without lesion (controls) (n = 41), with AP (n = 21) or with CRC (n = 23) were used as training sets. A 42-gene panel for CRC and AP discrimination, including genes identified by Digital Gene Expression-tag profiling of PBMC, and genes previously characterised and reported in the literature, was validated on the training set by qPCR. Logistic regression analysis followed by bootstrap validation determined CRC- and AP-specific classifiers, which discriminate patients with CRC and AP from controls. RESULTS: The CRC and AP classifiers were able to detect CRC with a sensitivity of 78% and AP with a sensitivity of 46% respectively. Both classifiers had a specificity of 92% with very low false-positive detection when applied on subjects with inflammatory bowel disease (n = 23) or tumours other than CRC (n = 14). CONCLUSION: This pilot study demonstrates the potential of developing a minimally invasive, accurate test to screen patients at average risk for colorectal cancer, based on gene expression analysis of peripheral blood mononuclear cells obtained from a simple blood sample.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuroendocrine differentiation has been described in rectal adenocarcinomas receiving neoadjuvant therapy prior to radical surgery, but its clinical relevance is controversial and no data are currently available in colorectal carcinoma metastases as compared to primary tumors. The presence of chromogranin A positive tumor cells was investigated by means of immunohistochemistry on surgical specimens from 54 primary colorectal carcinomas and their corresponding metastases, resected at diagnosis or during tumor progression. In 47 patients, tumor metastases were resected 1 month to 12 years after chemotherapy and/or radiotherapy, while in the remaining seven patients no additional therapy after primary surgery was performed. In primary tumors, neuroendocrine differentiation was found in 12/54 cases (22.2%) as compared to 25/54 metastatic lesions (46.3%; p?=?0.01). The presence of neuroendocrine phenotype was not correlated with any clinical pathological parameter nor with a different proliferation index. However, patients having neuroendocrine cells in the primary tumor had a significantly shorter survival from the time of metastatic spread than those having not (33.3 vs. 55.5 months; p?=?0.04). In summary, our data show that colorectal carcinoma metastases contain a higher percentage of neuroendocrine differentiated cells as compared to their corresponding primaries, a finding possibly related to the influence of chemotherapy in neuroendocrine differentiation during colorectal carcinoma progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Colon cancer is a leading and expanding cause of death worldwide. A major contributory factor to this disease is diet composition; some components are beneficial (e.g. dietary fibre) whilst others are detrimental (e.g. alcohol). Garlic oil is a prominent dietary constituent that prevents the development of colorectal cancer. This effect is believed to be mainly due to diallyl disulphide (DADS), which selectively induces redox stress in cancerous (rather than normal) cells which leads to apoptotic cell death. However, the detailed mechanism by which DADS causes apoptosis remains unclear. We show that DADS-treatment of colonic adenocarcinoma cells (HT-29) initiates a cascade of molecular events characteristic of apoptosis. These include a decrease in cellular proliferation, translocation of phosphatidylserine to the plasma-membrane outer-layer, activation of caspase-3, genomic-DNA fragmentation and G2/M phase cell-cycle arrest. Short-chain fatty acids (SCFAs), particularly butyrate (abundantly produced in the gut by bacterial fermentation of dietary polysaccharides), enhance colonic cell integrity but, in contrast, inhibit colonic-cancer cell growth. Combining DADS with butyrate augmented the effect of butyrate on HT-29 cells. These results suggest that the anti-cancerous properties of DADS afford greater benefit when supplied with other favourable dietary factors (SCFA/polysaccharides) that likewise reduce colonic tumour development.