961 resultados para color vision impairment
Resumo:
Color vision impairment emerges at early stages of diabetes mellitus type 2 (DM2) and may precede diabetic retinopathy or the appearance of vascular alterations in the retina. The aim of the present study was to compare the evaluation of the color vision with two different tests - the Lanthony desaturated D-15d test (a traditional color arrangement test), and the Cambridge Colour Test (CCT) (a computerized color discrimination test) - in patients diagnosed with DM2 without clinical signs of diabetic retinopathy (DR), and in sex- and age-matched control groups. Both color tests revealed statistically significant differences between the controls and the worst eyes of the DM2 patients. In addition, the degree of color vision impairment diagnosed by both tests correlated with the disease duration. The D-15d outcomes indicated solely tritan losses. In comparison, CCT outcomes revealed diffuse losses in color discrimination: 13.3% for best eyes and 29% for worst eyes. In addition, elevation of tritan thresholds in the DM2 patients, as detected by the Trivector subtest of the CCT, was found to correlate with the level of glycated hemoglobin. Outcomes of both tests confirm that subclinical losses of color vision are present in DM2 patients at an early stage of the disease, prior to signs of retinopathy. Considering the advantages of the CCT test compared to the D-15d test, further studies should attempt to verify and/or improve the efficiency of the CCT test.
Resumo:
This longitudinal study addresses the reversibility of color vision losses in subjects who had been occupationally exposed to mercury vapor. Color discrimination was assessed in 20 Hg-exposed patients (mean age = 42.4 +/- 6.5 years; 6 females and 14 males) with exposure to Hg vapor during 10.5 +/- 5.3 years and away from the work place (relative to 2002) for 6.8 +/- 4.2 years. During the Hg exposure or up to one year after ceasing it, mean urinary Hg concentration was 47 +/- 35.4 mu g/g creatinine. There was no information on Hg urinary concentration at the time of the first tests, in 2002 (Ventura et al., 2005), but at the time of the follow-up tests, in 2005, this value was 1.4 +/- 1.4 mu g/g creatinine for patients compared with 0.5 +/- 0.5 mu g/g creatinine for controls (different group from the one in Ventura et al. (2005)). Color vision was monocularly assessed using the Cambridge Colour Test (CCT). Hg-exposed patients had significantly worse color discrimination (p < 0.02) than controls, as evaluated by the size of MacAdam`s color discrimination ellipses and color discrimination thresholds along protan, deutan, and tritan confusion axes. There were no significant differences between the results of the study in Ventura et al. (2005) and in the present follow-up measurements, in 2005, except for worsening of the tritan thresholds in the best eye in 2005. Both chromatic systems, blue-yellow and red-green, were affected in the first evaluation (Ventura et al., 2005) and remained impaired in the follow-up testing, in 2005. These findings indicate that following a long-term occupational exposure to Hg vapor, even several years away from the source of intoxication, color vision impairment remains irreversible.
Resumo:
The purpose of this study was to evaluate the visual outcome of chronic occupational exposure to a mixture of organic solvents by measuring color discrimination, achromatic contrast sensitivity and visual fields in a group of gas station workers. We tested 25 workers (20 males) and 25 controls with no history of chronic exposure to solvents (10 males). All participants had normal ophthalmologic exams. Subjects had worked in gas stations on an average of 9.6 +/- 6.2 years. Color vision was evaluated with the Lanthony D15d and Cambridge Colour Test (CCT). Visual field assessment consisted of white-on-white 24-2 automatic perimetry (Humphrey II-750i). Contrast sensitivity was measured for sinusoidal gratings of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 cycles per degree (cpd). Results from both groups were compared using the Mann-Whitney U test. The number of errors in the D15d was higher for workers relative to controls (p<0.01). Their CCT color discrimination thresholds were elevated compared to the control group along the protan, deutan and tritan confusion axes (p<0.01), and their ellipse area and ellipticity were higher (p<0.01). Genetic analysis of subjects with very elevated color discrimination thresholds excluded congenital causes for the visual losses. Automated perimetry thresholds showed elevation in the 9 degrees, 15 degrees and 21 degrees of eccentricity (p<0.01) and in MD and PSD indexes (p<0.01). Contrast sensitivity losses were found for all spatial frequencies measured (p<0.01) except for 0.5 cpd. Significant correlation was found between previous working years and deutan axis thresholds (rho = 0.59; p<0.05), indexes of the Lanthony D15d (rho = 0.52; p<0.05), perimetry results in the fovea (rho = -0.51; p<0.05) and at 3, 9 and 15 degrees of eccentricity (rho = -0.46; p<0.05). Extensive and diffuse visual changes were found, suggesting that specific occupational limits should be created.
Resumo:
The classic hypothesis of Livingstone and Hubel (1984, 1987) proposed two types of color pathways in primate visual cortex based on recordings from single cells: a segregated, modularpathway that signals color but provides little information about shape or form and a second pathway that signals color differences and so defines forms without the need to specify their colors. A major problem has been to reconcile this neurophysiological hypothesis with the behavioral data. A wealth of psychophysical studies has demonstrated that color vision has orientation-tuned responses and little impairment on form related tasks, but these have not revealed any direct evidence for nonoriented mechanisms. Here we use a psychophysical method of subthreshold summation across orthogonal orientations for isoluminant red-green gratings in monocular and dichoptic viewing conditions to differentiate between nonoriented and orientation-tuned responses to color contrast. We reveal nonoriented color responses at low spatial frequencies (0.25-0.375 c/deg) under monocular conditions changing to orientation-tuned responses at higher spatial frequencies (1.5 c/deg) and under binocular conditions. We suggest that two distinct pathways coexist in color vision at the behavioral level, revealed at different spatial scales: one is isotropic, monocular, and best equipped for the representation of surface color, and the other is orientation-tuned, binocular, and selective for shape and form. This advances our understanding of the organization of the neural pathways involved in human color vision and provides a strong link between neurophysiological and behavioral data. © 2013 ARVO.
Resumo:
We evaluated the color vision of 24 subjects (41.6 ± 6.5 years; 6 females) who worked in fluorescent lamp industries. They had been occupationally exposed to mercury vapor (10.6 ± 5.2 years) and had been away from the source of exposure for 6.4 ± 4.04 years. Mean urinary concentration of mercury was 40.6 ± 36.4 µg/g creatinine during or up to 1 year after exposure and 2.71 ± 1.19 µg/g creatinine at the time of color vision testing or up to 1 year thereafter. All patients were diagnosed with chronic mercury intoxication, characterized by clinical symptoms and neuropsychological alterations. A control group (N = 36, 48.6 ± 11.9 years, 10 females, 1.5 ± 0.47 µg mercury/g creatinine) was subjected to the same tests. Inclusion criteria for both groups were Snellen VA 20/30 or better and absence of known ophthalmologic pathologies. Color discrimination was assessed with the Farnsworth D-15 test (D-15) and with the Lanthony D-15d test (D-15d). Significant differences were found between the two eyes of the patients (P < 0.001) in both tests. Results for the worst eye were also different from controls for both tests: P = 0.014 for D-15 and P < 0.001 for D-15d. As shown in previous studies, the D-15d proved to be more sensitive than the D-15 for the screening and diagnosis of the color discrimination losses. Since color discrimination losses were still present many years after the end of exposure, they may be considered to be irreversible, at least under the conditions of the present study.
Resumo:
Pacientes que fazem uso de cloroquina ou hidróxi-cloroquina, drogas que são freqüentemente administradas para o tratamento de artrite reumatóide, lúpus eritrematoso ou malária, podem sofrer alterações na visão de cores e na sensibilidade de contraste. O presente estudo avaliou a função visual destes pacientes em um estudo conjunto da Universidade de São Paulo (USP), em São Paulo, e da Universidade Federal do Pará (UFPA), em Belém. Trinta e dois pacientes usuários de cloroquina sem alterações no exame de fundo de olho foram avaliados em São Paulo (n=10, 38 a 71 anos, média=55,8 anos) e em Belém (n=22, 20 a 67 anos, média=40 anos). A dose acumulada de cloroquina prescrita foi de 45 a 430 g (média=213 g; dp=152 g) para o grupo de São Paulo, e de 36 a 540 g (média=174 g; dp=183 g) para o grupo de Belém. Os testes foram realizados monocularmente com o estado refracional corrigido. A discriminação de cor foi avaliada utilizando o Teste de Cor de Cambridge (CCT): o limiar de discriminação de cor foi mensurado primeiro nos eixos protano, deutano e tritano, e em seqüência, três elipses de MacAdam foram determinadas. A visão de cores dos pacientes também foi avaliada com testes de arranjo de cores: o teste de 100 matizes de Farnsworth-Munsell (FM100), o D15 de Farnsworth-Munsell, e o teste Lanthony Dessaturado (D15d). A sensibilidade de contraste foi também medida com grades senoidais preto-e-brancas em 22 pacientes. Os resultados foram comparados com controles sem patologias oftalmológicasou neuro-oftalomológicas. 24 pacientes apresentaram discromatopsia adquirida, com perdas seletivas (11 pessoas) ou difusas (13 pessoas). Embora as perdas estivessem presentes no FM100, não houve correlação entre o escore de erro do FM100 e a área elíptica medida pelo CCT. Além disso, três pacientes que tiveram escores normais no FM100 falharam para alcançar limiares normais no CCT. O teste de Lanthony foi menos sensível do que os outros dois testes, tal que falhou em indicar perda em cerca de metade dos pacientes afetados, e o D15 foi o teste menos sensível, deixando de indicar déficits em 9 de 10 pacientes. A sensibilidade de contraste esteve dentro dos valores normais para pacientes submetidos a este teste. A extensão das perdas na discriminação de cores foi positivamente correlacionada com a dose acumulada. O CCT é recomendado para o acompanhamento destes pacientes, pois forneceu dados quantitativos que podem ser diretamente interpretados no espaço cromático da CIE (Commission Internationelle d'Éclairage).
Resumo:
Color vision was examined in subjects with long-term occupational exposure to mercury (Hg) vapor. The color vision impairment was assessed by employing a quantitative measure of distortion of individual and group perceptual color spaces. Hg subjects (n = 18; 42.1 +/- 6.5 years old; exposure time = 10.4 +/- 5.0 years; time away from the exposure source = 6.8 +/- 4.6 years) and controls (n = 18; 46.1 +/- 8.4 years old) were examined using two arrangement tests, D-15 and D-15d, in the traditional way, and also in a triadic procedure. From each subject`s `odd-one-out` choices, matrices of inter-cap subjective dissimilarities were derived and processed by non-metric multidimensional scaling (MDS). D-15d results differed significantly between the Hg-group and the control group (p < 0.05), with the impairment predominantly along the tritan axis. 2D perceptual color spaces, individual and group, were reconstructed, with the dimensions interpreted as the red-green (RG) and the blue-yellow (BY) systems. When color configurations from the Hg-group were compared to those of the controls, they presented more fluctuations along both chromatic dimensions, indicating a statistically significant difference along the BY axis. In conclusion, the present findings confirm that color vision impairments persist in subjects that have received long-term occupational exposure to Hg-vapor although, at the time of testing, they were presenting mean urinary concentration within the normal range for non-exposed individuals. Considering the advantages of the triadic procedure in clinical evaluation of acquired color vision deficiencies, further studies should attempt to verify and/or improve its efficacy.
Resumo:
The present study aimed at providing conditions for the assessment of color discrimination in children using a modified version of the Cambridge Colour Test (CCT, Cambridge Research Systems Ltd., Rochester, UK). Since the task of indicating the gap of the Landolt C used in that test proved counterintuitive and/or difficult for young children to understand, we changed the target Stimulus to a patch of color approximately the size of the Landolt C gap (about 7 degrees Of Visual angle at 50 cm from the monitor). The modifications were performed for the CCT Trivector test which measures color discrimination for the protan, deutan and tritan confusion lines. Experiment I Sought to evaluate the correspondence between the CCT and the child-friendly adaptation with adult subjects (n = 29) with normal color vision. Results showed good agreement between the two test versions. Experiment 2 tested the child-friendly software with children 2 to 7 years old (n = 25) using operant training techniques for establishing and maintaining the subjects` performance. Color discrimination thresholds were progressively lower as age increased within the age range tested (2 to 30 years old), and the data-including those obtained for children-fell within the range of thresholds previously obtained for adults with the CCT. The protan and deutan thresholds were consistently lower than tritan thresholds, a pattern repeatedly observed in adults tested with the CCT. The results demonstrate that the test is fit for assessment of color discrimination in young children and may be a useful tool for the establishment of color vision thresholds during development.
Resumo:
The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. Am. J. Primatol. 73:189-196, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The identification of color vision types in primates is fundamental to understanding the evolution and biological function of color perception. The Hard, Randy, and Rittler (HRR) pseudoisochromatic test categorizes human color vision types successfully. Here we provide an experimental setup to employ HRR in a nonhuman primate, the capuchin (Cebus libidinosus), a platyrrhine with polymorphic color vision. The HRR test consists of plates with a matrix composed of gray circles that vary in size and brightness. Differently colored circles form a geometric shape (X, O, or Delta) that is discriminated visually from the gray background pattern. The ability to identify these shapes determines the type of dyschromatopsy (deficiency in color vision). We tested six capuchins in their own cages under natural sunlight. The subjects chose between two HRR plates in each trial: one with the gray pattern only and the other with a colored shape, presented on the left or right side at random. We presented the test 40 times and calculated the 95 % confidence limits for chance performance based on the binomial test. We also genotyped all subjects for exons 3 and 5 of the X-linked opsin genes. The HRR test diagnosed two subjects as protan dichromats (missing or defective L-cone), three as deutan dichromats (missing or defective M-cone), and one female as trichromat. Genetic analysis supported the behavioral data for all subjects. These findings show that the HRR test can be applied to diagnose color vision in nonhuman primates.
Resumo:
Choroidal metastasis represents the most common type of intraocular malignancy and preferably involves the posterior uveal tract. Breast and lung cancer - known or so far undiagnosed - are most frequently identified as the underlying tumor disease. The majority of patients diagnosed with uveal metastasis have additional metastatic manifestations elsewhere, so re-staging before treatment is recommended. The importance of a multidisciplinary approach is obvious. Early diagnosis and timely initiation of treatment are mandatory in case of vision-threatening situations. External beam radiation remains the therapy of choice. Overall survival of patients with uveal metastasis is limited, averaging six to twelve months. The other eye is frequently enough affected as well, justifying regular ophthalmologic follow-up during the further course of the disease.
Resumo:
It is known that the squirrel monkey, marmoset, and other related New World (NW) monkeys possess three high-frequency alleles at the single X-linked photopigment locus, and that the spectral sensitivity peaks of these alleles are within those delimited by the human red and green pigment genes. The three alleles in the squirrel monkey and marmoset have been sequenced previously. In this study, the three alleles were found and sequenced in the saki monkey, capuchin, and tamarin. Although the capuchin and tamarin belong to the same family as the squirrel monkey and marmoset, the saki monkey belongs to a different family and is one of the species that is most divergent from the squirrel monkey and marmoset, suggesting the presence of the triallelic system in many NW monkeys. The nucleotide sequences of these alleles from the five species studied indicate that gene conversion occurs frequently and has partially or completely homogenized intronic and exonic regions of the alleles in each species, making it appear that a triallelic system arose independently in each of the five species studied. Nevertheless, a detailed analysis suggests that the triallelic system arose only once in the NW monkey lineage, from a middle wavelength (green) opsin gene, and that the amino acid differences at functionally critical sites among alleles have been maintained by natural selection in NW monkeys for >20 million years. Moreover, the two X-linked opsin genes of howler monkeys (a NW monkey genus) were evidently derived from the incorporation of a middle (green) and a long wavelength (red) allele into one chromosome; these two genes together with the (autosomal) blue opsin gene would immediately enable even a male monkey to have trichromatic vision.