998 resultados para colloidal state


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mössbauer spectroscopy was used to investigate the early aging stage of iron(III) hydroxide sols prepared by oxidation of Fe(CO)5 in ethanolic solution, followed by vacuum drying at room temperature. One sample was composed of amorphous particles, while two other samples were partially crystallized, either as a result of solvent change or of spontaneous aging. The main results of Mössbauer measurements in the 80-320 K temperature range are: (a) partially crystallized particles exhibit a strong, S-shaped temperature dependence of the quadrupole splitting, in contrast to a weak and linear variation for amorphous particles; (b) the recoilless fraction temperature dependence is affected by vibration of the particles as a whole, with an effective force constant which is smaller for crystallized particles than for amorphous ones. Furthermore, the former exhibit anf-factor discontinuity near 0°C, which is attributed to melting of a surface layer built up during the crystallization process. © 1986.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work the thermal characteristics of gels and xerogels of Silica/organic hybrids derived from different concentrations of GPTS-TEOS were investigated by thermal analysis (TG, DTA, and DSC). The preparation of gels of the Silica/organic hybrid matrix was held through the sol-gel process, consisting by the hydrolysis of alkoxides GPTS and TEOS in proportion (1:1) and (1:2) that was promoted in acidic conditions under reflux and stirring at 80oC/2h, producing the matrix in the colloidal state (sol). Gels were prepared by addition of NH4OH to the sol, promoting gelation of sol in sealed plastics containers. Part of the gels samples was analyzed by TG, DTS and DSC techniques in order to characterize water loss and degradation of the polymeric “epoxy” groups present in the structure of the silica derived from the GPTS alkoxide. Another set of samples was dried at 80oC/48h to obtain xerogels (dried gels) and analyzed by the same techniques. We obtained the characteristics temperatures of the matrix by the techniques DTA, DSC and TG, under measurements of thermal analysis until 800oC and 600oC in case of DSC. By thermal analysis (TG, DTA, and DSC) the main endothermic events (loss of water, melting, pyrolysis) and exothermic events (burning of the polymer) of the GPTS-TEOS matrix were determined

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, some research groups have been developing studies aiming to apply spouted beds of inert particles for production of dried herbal extracts. However, mainly due to their complex composition, several problems arise during the spouted bed drying of herbal extracts such as bed instability, product accumulation, particle agglomeration, and bed collapse. The addition of drying carriers, like colloidal silicon dioxide, to the extractive solution can minimize these unwanted effects. The aim of this work was to study the influence of the addition of colloidal silicon dioxide on enhancement of the performance of the drying of hydroalcoholic extract of Bauhinia forficata Link on a spouted bed of inert particles. The physical properties of the herbal extract and of its mixture with colloidal silicon dioxide at several concentrations (20% to 80% related to solids content) were quantified by determination of the surface tension, rheological properties, density, pH, and contact angles with the inert surfaces. Drying performance was evaluated through determination of the elutriation ratio, product recovery ratio, and product accumulation. The product was characterized through determination of the thermal degradation of bioactive compounds and product moisture content. The results indicated that the rheological properties of the extracts and their preparations, the contact angle with inert material, and the work of adhesion play important roles in the spouted bed drying of herbal extracts. Higher concentration of the drying carrier significantly improved the spouted bed drying performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal indigo is reduced to an aqueous solution of leuco-indigo in a mediated two-electron process converting the water-insoluble dye into the water-soluble leuco form. The colloidal dye does not interact directly with the electrode surface, and to employ an electrochemical process for this reduction, the redox mediator 1,8-dihydroxyanthraquinone (1,8-DHAQ) is used to transfer electrons from the electrode to the dye. The mediated reduction process is investigated at a (500-kHz ultrasound-assisted) rotating disc electrode, and the quantitative analysis of voltammetric data is attempted employing the Digisim numerical simulation software package. At the most effective temperature, 353 K, the diffusion coefficient for 1,8-DHAQ is (0.84 +/- 0.08)x10(-9) m(2) s(-1), and it is shown that an apparently kinetically controlled reaction between the reduced form of the mediator and the colloidal indigo occurs within the diffusion layer at the electrode surface. The apparent bimolecular rate constant k (app)=3 mol m(-3) s(-1) for the rate law d[leuco-indigo]/dt = k(app) x [mediator] x [indigo] is determined and attributed to a mediator diffusion controlled dissolution of the colloid particles. The average particle size and the number of molecules per particles are estimated from the apparent bimolecular rate constant and confirmed by scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

defect metal alloy strip when thixorolling directly from the semi-solid state. To facilitate the study lead/tin alloys were chosen for their relatively low operating temperature. The objective is to extrapolate these findings to the higher temperature aluminium, alloys. Three alloys (70%Pb30%Sn, 60%Pb-40%Sn, 50%Pb-50%wtSn) were used particularly to study the influence of the solidification interval. The equipment consists of a two roll mill arranged as an upper and lower roller, where both rollers are driven at a controlled speed. The lower roller is fed with semi solid alloy through a ceramic nozzle attached to the lower end of a cooling slope. Several types of nozzle and their position at the roller were tested. This produced different solidifications and consequently different finished strip. The alloys were first cast and then poured onto the cooling slope through a tundish in order to create a continuous laminar flow of slurry and uniformity of metal strip quality. The pouring was tested at different positions along the slope. The cooling slope was coated with colloidal graphite to promote a smooth slurry flow and avoid the problem of adherence and premature solidification. The metallic slurry not only cools along the slope but is also initially super-cooled to a mush by the lower roller whilst at room temperatures, thus enabling thixorolling. It was also found that the nozzle position could be adjusted to enable the upper roller to also contribute to the solidification of the metallic slurry. However the rollers and the cooling slope naturally heat up. Temperature distribution in these zones was analysed by means of three thermocouples positioned along the cooling slope and a fourth in the base of the semi solid pool within the nozzle. The objective being to design an optimum pouring and cooling system. The formed strip was cooled down to room temperature with a shower of water. Microstructures of the thixorolling process were analysed. The differences in solidification conditions resulted in differing qualities of finished strip and corresponding defect types, all of which are a serious quality issue for the rolled product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of formation and growth of hydrous iron oxide (FeOOH) during the initial stages of forced hydrolyses of ferric chloride aqueous solution was studied by small angle X-ray scattering (SAXS). The effect of the hydrolysis temperature (60°C, 70°C and 80°C) and of the addition of urea on the formation of colloidal particles under isothermal conditions were investigated. Based on the experimental scattering functions in the Guinier range, we suggest the presence of elongated colloidal particles. The particle diameter and length, and their variation with time, were determined by fitting the form factor of prolate ellipsoids to the experimental scattering functions. We have assumed that our solutions are in a dilute state and that all colloidal particles are approximately of the same size. The colloidal particles have geometrical shapes similar to those of the subcrystals that build up the superstructure of β-FeOOH crystals, indicating that the formation of this hydrous iron oxide is governed by an aggregation process. Otherwise, the addition of urea hinders the growth and yields smaller particles, with a reduction in size greater than 50%. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the effect of the concentration of electrolyte and pH on the kinetics of aggregation and gelation processes of SnO2 colloidal suspensions. Creep, creep-recovery, and oscillatory rheological experiments have been done in situ during aggregation and gelation. A phenomenological description of the structure of the colloidal system is given from the time evolution of rheological parameters. The dependence of the equilibrium steady-state shear compliance on the terminal region of clusters or aggregates seems to be a way to determine the beginning of interconnection of aggregates and the gel point. We propose that at this point the equilibrium steady-state compliance is a minimum. The steady-state viscosity determined from creep experiment can be fit with a power law with the extent of the transformation, giving critical exponent s = 0.7 ± 0.1. The value of the critical exponent Δ = 0.78 ± 0.05 was determined from oscillatory experiment. These results indicate that gelation of SnO2 colloidal suspension exhibits the typical scale expected from the scalar percolation theory. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly-N-Isopropylacrylamide (PNIPAM) colloidal particles form crystal phases that show a thermosensitive behaviour and can be used as atomic model systems. This polymer has both hydrophilic and hydrophobic character and has interesting stimuli-responsive properties in aqueous solution, of which the most important is the temperature response. Above a certain temperature, called Lower Critical Solution Temperature (LCST), the system undergoes a volume phase transition (VPT). Above the LCST, the water is expelled from the polymer network and the swollen state at low temperature transforms into a shrunken state at high temperature. The thermoresponsive behaviour of PNIPAM can be influenced by pH and ionic strength, as well as by the presence of copolymers, such as acrylic acid. In a system formed both by particles of PNIPAM and PNIPAM doped with acrylic acid, one can control the size ratio of the two components by changing the temperature of the mixture, while keeping particle interactions relatively the same. It is therefore possible to obtain thermoresponsive colloidal crystal in which temperature changes induce defects whose formation processes and dynamics can be analysed in an optical microscope at a convenient spatial and temporal scale. The goal of this thesis project was to find the conditions in which such a system could be formed, by using characterization techniques such as Static Light Scattering, Dynamic Light Scattering and Confocal Laser Scanning Microscopy. Two PNIPAM-AAc systems were available, and after characterization it was possible to select a suitable one, on the basis of its low polydispersity and the lack of a VPT, regardless of the external conditions (system JPN_7). The synthesis of a PNIPAM system was attempted, with particles of dimensions matching the JPN_7 system and, unlike JPN_7, displaying a VPT, and one suitable candidate for the mixed system was finally found (system CB_5). The best conditions to obtain thermoresponsive crystal were selected, and the formation and healing of defects were investigated with CLSM temperature scans. The obtained results show that the approach is the correct one and that the present report could represent a useful start for future developments in defect analysis and defect dynamics studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting with an inverse power law potential in d=2 dimensions. This system can describe colloidal particles at the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the state of the system (a strip of width D) depends very sensitively on the precise boundary conditions at the two ``walls'' providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state. However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order is enhanced, but positional (quasi-) long range order is destroyed: The mean-square displacement of two particles n lattice parameters apart in the y-direction along the walls then crosses over from the logarithmic increase (characteristic for $d=2$) to a linear increase (characteristic for d=1). The strip then exhibits a vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a comparison with surface effects on phase transitions in simple Ising- and XY-models is made