998 resultados para collective dynamics
Resumo:
A Comment on the Letter by Ubaldo Bafile, et al., Phys. Rev. Lett. 86, 1019 (2001). The authors of the Letter offer a Reply.
Resumo:
Six Degrees: The New Science of Networks (Sociology, W3233, Spring 2006) Original URL: http://cdg.columbia.edu/cdg/courses/spring06/sixDegrees/syllabus.jsp
Resumo:
The Networks and Complexity in Social Systems course commences with an overview of the nascent field of complex networks, dividing it into three related but distinct strands: Statistical description of large scale networks, viewed as static objects; the dynamic evolution of networks, where now the structure of the network is understood in terms of a growth process; and dynamical processes that take place on fixed networks; that is, "networked dynamical systems". (A fourth area of potential research ties all the previous three strands together under the rubric of co-evolution of networks and dynamics, but very little research has been done in this vein and so it is omitted.) The remainder of the course treats each of the three strands in greater detail, introducing technical knowledge as required, summarizing the research papers that have introduced the principal ideas, and pointing out directions for future development. With regard to networked dynamical systems, the course treats in detail the more specific topic of information propagation in networks, in part because this topic is of great relevance to social science, and in part because it has received the most attention in the literature to date.
Resumo:
We investigate the behavior of a single-cell protozoan in a narrow tubular ring. This environment forces them to swim under a one-dimensional periodic boundary condition. Above a critical density, single-cell protozoa aggregate spontaneously without external stimulation. The high-density zone of swimming cells exhibits a characteristic collective dynamics including translation and boundary fluctuation. We analyzed the velocity distribution and turn rate of swimming cells and found that the regulation of the turing rate leads to a stable aggregation and that acceleration of velocity triggers instability of aggregation. These two opposing effects may help to explain the spontaneous dynamics of collective behavior. We also propose a stochastic model for the mechanism underlying the collective behavior of swimming cells.
Resumo:
Time correlation functions of current fluctuations were calculated by molecular dynamics (MD) simulations in order to investigate sound waves of high wavevectors in the glass-forming liquid Ca(NO3)(2)center dot 4H(2)O. Dispersion curves, omega(k), were obtained for longitudinal (LA) and transverse acoustic (TA) modes, and also for longitudinal optic (LO) modes. Spectra of LA modes calculated by MD simulations were modeled by a viscoelastic model within the memory function framework. The viscoelastic model is used to rationalize the change of slope taking place at k similar to 0.3 angstrom(-1) in the omega(k) curve of acoustic modes. For still larger wavevectors, mixing of acoustic and optic modes is observed. Partial time correlation functions of longitudinal mass currents were calculated separately for the ions and the water molecules. The wavevector dependence of excitation energies of the corresponding partial LA modes indicates the coexistence of a relatively stiff subsystem made of cations and anions, and a softer subsystem made of water molecules. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751548]
Resumo:
Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.
Resumo:
We discuss the influence of a uniform current j⃗ on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ε(q⃗) has a current-induced contribution proportional to q⃗⋅J→, where J→ is the spin current, and predict that collective dynamics will be more strongly damped at finite j⃗. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109A cm-2. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
Structural and dynamical properties of liquid trimethylphosphine (TMP), (CH(3))(3)P, as a function of temperature is investigated by molecular dynamics (MD) simulations. The force field used in the MD simulations, which has been proposed from molecular mechanics and quantum chemistry calculations, is able to reproduce the experimental density of liquid TMP at room temperature. Equilibrium structure is investigated by the usual radial distribution function, g(r), and also in the reciprocal space by the static structure factor, S(k). On the basis of center of mass distances, liquid TMP behaves like a simple liquid of almost spherical particles, but orientational correlation due to dipole-dipole interactions is revealed at short-range distances. Single particle and collective dynamics are investigated by several time correlation functions. At high temperatures, diffusion and reorientation occur at the same time range as relaxation of the liquid structure. Decoupling of these dynamic properties starts below ca. 220 K, when rattling dynamics of a given TMP molecules due to the cage effect of neighbouring molecules becomes important. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624408]
Resumo:
During plastic deformation of crystalline materials, the collective dynamics of interacting dislocations gives rise to various patterning phenomena. A crucial and still open question is whether the long range dislocation-dislocation interactions which do not have an intrinsic range can lead to spatial patterns which may exhibit well-defined characteristic scales. It is demonstrated for a general model of two-dimensional dislocation systems that spontaneously emerging dislocation pair correlations introduce a length scale which is proportional to the mean dislocation spacing. General properties of the pair correlation functions are derived, and explicit calculations are performed for a simple special case, viz pair correlations in single-glide dislocation dynamics. It is shown that in this case the dislocation system exhibits a patterning instability leading to the formation of walls normal to the glide plane. The results are discussed in terms of their general implications for dislocation patterning.
Resumo:
During plastic deformation of crystalline materials, the collective dynamics of interacting dislocations gives rise to various patterning phenomena. A crucial and still open question is whether the long range dislocation-dislocation interactions which do not have an intrinsic range can lead to spatial patterns which may exhibit well-defined characteristic scales. It is demonstrated for a general model of two-dimensional dislocation systems that spontaneously emerging dislocation pair correlations introduce a length scale which is proportional to the mean dislocation spacing. General properties of the pair correlation functions are derived, and explicit calculations are performed for a simple special case, viz pair correlations in single-glide dislocation dynamics. It is shown that in this case the dislocation system exhibits a patterning instability leading to the formation of walls normal to the glide plane. The results are discussed in terms of their general implications for dislocation patterning.
Resumo:
We address the collective dynamics of a soliton train propagating in a medium described by the nonlinear Schrödinger equation. Our approach uses the reduction of train dynamics to the discrete complex Toda chain (CTC) model for the evolution of parameters for each train constituent: such a simplification allows one to carry out an approximate analysis of the dynamics of positions and phases of individual interacting pulses. Here, we employ the CTC model to the problem which has relevance to the field of fibre optics communications where each binary digit of transmitted information is encoded via the phase difference between the two adjacent solitons. Our goal is to elucidate different scenarios of the train distortions and the subsequent information garbling caused solely by the intersoliton interactions. First, we examine how the structure of a given phase pattern affects the initial stage of the train dynamics and explain the general mechanisms for the appearance of unstable collective soliton modes. Then we further discuss the nonlinear regime concentrating on the dependence of the Lax scattering matrix on the input phase distribution; this allows one to classify typical features of the train evolution and determine the distance where the soliton escapes from its slot. In both cases, we demonstrate deep mathematical analogies with the classical theory of crystal lattice dynamics.