879 resultados para coke-washing wastewater


Relevância:

100.00% 100.00%

Publicador:

Resumo:

生物质煤气废水是一种新出现的高浓度氨氮有机废水。作者采用化学沉淀法去除该废水中的氨氮,研究了不同沉淀剂、pH、温度和搅拌时间对氨氮去除效果的影响。结果表明,MgCl2+Na3PO4·12H2O明显优于其他沉淀剂组合。当n(Mg^2+):n(NH4^+):n(PO4^3-)=1:1:1、pH10.0、温度30℃、搅拌时间30min时,废水中的氨氮质量浓度从处理前的222mg/L降到17mg/L,去除率为92.3%。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In this study, the efficiency of Guar gum as a biopolymer has been compared with two other widely used inorganic coagulants, ferric chloride (FeCl3) and aluminum chloride (AlCl3), for the treatment of effluent collected from the rubber-washing tanks of a rubber concentrate factory. Settling velocity distribution curves were plotted to demonstrate the flocculating effect of FeCl3, AlCl3 and Guar gum. FeCl3 and AlCl3 displayed better turbidity removal than Guar gum at all settling velocities.

Result: FeCl3, AlCl3 and Guar gum removed 92.8%, 88.2% and 88.1% turbidity, respectively, of raw wastewater at a settling velocity of 0.1 cm min-1, respectively. Scanning electron microscopic (SEM) study conducted on the flocs revealed that Guar gum and FeCl3produced strong intercoiled honeycomb patterned floc structure capable of entrapping suspended particulate matter. Statistical experimental design Response Surface Methodology (RSM) was used to design all experiments, where the type and dosage of flocculant, pH and mixing speed were taken as control factors and, an optimum operational setting was proposed.

Conclusion: Due to biodegradability issues, the use of Guar gum as a flocculating agent for wastewater treatment in industry is highly recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p.p'-DDT (DDT) and p.p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments,Triton X-100(TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT). 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC(eff)). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu. Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The imposition of more stringent legislation by CETESB in the State of So Paulo (Brazil) governing the disposal and utilization of sewage sludge, coupled with the growth in its generation has prompted a drive for alternative uses of sewage sludge. One option that is especially promising, due to its potential to valorize sludge, is its conversion into carbonaceous adsorbents or coke for industrial effluents treatment. Thus, a methodology is presented to estimate the coke produced from the sludge of a sewage treatment station using thermal analysis. The used sewage sludge, which comes from aerobic treatment, was collected in the wastewater treatment station of Barueri, one of the largest of the So Paulo metropolitan area. The sludge samples were collected, dried, ground, and milled until they passed an ABNT 200 sieve. The inert ambient used during its thermal treatment produces inorganic matter and coke as residual materials. Coke formation occurs in the 200-500 A degrees C range and, between 500 and 900 A degrees C, its thermal decomposition occurs. The highest formation of coke occurs at 500 A degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment plants that operate either thermophilic or mesophilic anaerobic digesters with centrifugal dewatering processes have consistently observed densities of fecal coliform and Escherichia coli, both indicator bacteria, that decrease during digestion but then increase after dewatering and storage. The increases have been characterized as two separate phenomena to explain this observation: 1) “Sudden Increase,” or SI, which is defined as the increase that occurs immediately after dewatering and 2) “regrowth,” which is defined as an increase during storage of cake samples over a period of hours or days. The SI observation appears to be more prevalent with biosolids that are generated with thermophilic processes and dewatered by centrifugation. Both thermophilic and mesophilic digesters with centrifuge dewatering processes have observed the regrowth phenomena. This research hypothesizes that the SI phenomenon is due to the presence of viable nonculturable (VNC) bacteria that are reactivated during dewatering. In other words, the bacteria were always present but were not enumerated by standard culturing methods (SCM). Analysis of the E. coli density in thermally treated solids by SCMs and quantitative real-time polymerase chain reaction (qPCR) indicated that E. coli densities are often underestimated by SCM. When analyzed with qPCR, the E. coli density after digestion can be 4-5 orders of magnitude greater than the non-detect levels identified by SCMs, which supports the non-culturable hypothesis. The VNC state describes a condition where bacteria are alive but unable to sustain the metabolic process needed for cellular division. Supplements added to culturing media were investigated to determine if the resuscitation of VNC bacteria could be enhanced. The autoinducer molecules Nhexanoyl- L-Homoserine lactone (C6-HSL), 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo- C8-HSL), and norepinephrine were unable to induce the resuscitation of VNC E. coli. Additional sampling was performed to determine if autoinducer molecules, peroxides, or other as of yet unknown inhibitory agents and toxins could be removed from biosolids during SCM. Culture media supplemented with the peroxide degrading compounds catalase, α-ketoglutaric acid, and sodium pyruvate was unable to resuscitate non-culturable E. coli. The additions of bentonite and exponential growth phase E. coli cell-free supernatant to culturing media were also unable to increase the culturability of E. coli. To remove inhibitory agents and toxins, a cell washing technique was employed prior to performing SCM; however, this cell washing technique may have increased cellular stresses that inhibited resuscitation since cell densities decreased. A novel laboratory-scale dewatering process was also investigated to determine if the SI and regrowth phenomena observed in full-scale centrifugal dewatering could be mimicked in the laboratory using a lab shearing device. Fecal coliform and E. coli densities in laboratory prepared cake samples were observed to be an order of magnitude higher than full-scale dewatered cakes. Additionally, the laboratory-scale dewatering process was able to resuscitate fecal coliforms and E. coli in stored sludge such that the density increased by 4-5 orders of magnitude from nondetect values. Lastly, the addition of aluminum sulfate during centrifuge dewatering at a full-scale utility produced an increased regrowth of fecal coliforms and E. coli that was sustained for 5 days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coke oven liquor is a toxic wastewater produced in large quantities by the Iron and Steel, and Coking Industries, and gives rise to major effluent treatment problems in those industries. Conscious of the potentially serious environmental impact of the discharge of such wastes, pollution control agencies in many countries have made progressively more stringent quality requirements for the discharge of the treated waste. The most common means of treating the waste is the activated sludge process. Problems with achieving consistently satisfactory treatment by this process have been experienced in the past. The need to improve the quality of the discharge of the treated waste prompted attempts by TOMLINS to model the process using Adenosine Triphosophnte (ATP) as a measure of biomass, but these were unsuccessful. This thesis describes work that was carried out to determine the significance of ATP in the activated sludge treatment of the waste. The use of ATP measurements in wastewater treatment were reviewed. Investigations were conducted into the ATP behaviour of the batch activated sludge treatment of two major components of the waste, phenol, and thiocyanate, and the continuous activated sludge treatment of the liquor itself, using laboratory scale apparatus. On the basis of these results equations were formulated to describe the significance of ATP as a measured activity and biomass in the treatment system. These were used as the basis for proposals to use ATP as a control parameter in the activated sludge treatment of coke oven liquor, and wastewaters in general. These had relevance both to the treatment of the waste in the reactor and to the settlement of the sludge produced in the secondary settlement stage of the treatment process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aimed to assess the magnitude of sewage pollution in an urban lake in Dhaka, Bangladesh by using Quantitative PCR (qPCR) of sewage-associated Bacteroides HF183 markers. PCR was also used for the quantitative detection of ruminant wastewater-associated CF128 markers along with the enumeration of traditional fecal indicator bacteria, namely, enterococci. The number of enterococci in lake water samples ranged from 1.1 x 104 to 1.9 x 105 CFU/100 ml of water. From the 20 water samples tested, 14 (70%) and 7 (35%) were PCR positive for the HF183 and CF128 markers, respectively. The numbers of the HF183 and CF128 markers in lake water samples were 3.9 x 104 to 6.3 × 107 and 9.3 x 103 to 6.3 x 105 genomic units (GU)/100 ml of water, respectively. The high numbers of enterococci and the HF183 markers indicate sewage pollution and potential health risks to those who use the lake water for non-potable purposes such as bathing and washing clothes. This is the first study that investigated the presence of microbial source tracking (MST) markers in Dhaka, Bangladesh where diarrhoeal diseases is one of the major causes of childhood mortality. The molecular assay as used in this study can provide valuable information on the extent of sewage pollution, thus facilitating the development of robust strategies to minimise potential health risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study investigated: (i) the prevalence of ureaplasmas in semen and washed semen and (ii) the effect of ureaplasmas on semen andrology parameters. Design: Prospective study. Setting: IVF unit -private hospital, Brisbane, Australia. Patient(s): Three hundred and forty three men participating in an assisted reproductive technology (ART) treatment cycle. Intervention(s): Semen and washed semen tested by culture, PCR assays and indirect immunofluorescent antibody assays. Statistical differences were determined by a t-test, Wilcoxon or Pearson’s Chi- square test where appropriate. Main Outcome Measure(s): The prevalence of ureaplasmas in semen and washed semen and the effect of these microorganisms on semen andrology parameters. Result(s): Ureaplasmas were detected in 73/343 (22%) semen samples and 29/343 (8.5%) washed semen samples. Ureaplasmas adherent to the surface of spermatozoa were demonstrated by indirect immunofluorescent antibody testing. U. parvum serovar 6 (36.6%) and U. urealyticum (30%) were the most prevalent isolates in washed semen. A comparison of the semen andrology parameters of washed semen ureaplasma positive and negative groups demonstrated a lower proportion of non-motile sperm in the washed semen ureaplasma positive group. Conclusion(s): Ureaplasmas are not always removed from semen by a standard ART washing procedure and can remain adherent to the surface of spermatozoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.