995 resultados para coherence analysis
Resumo:
Department of Marine Geology and Geophysics,Cochin University of Science and Technology
Resumo:
Objective: The Panayiotopoulos type of idiopathic occipital epilepsy has peculiar and easily recognizable ictal symptoms, which are associated with complex and variable spike activity over the posterior scalp areas. These characteristics of spikes have prevented localization of the particular brain regions originating clinical manifestations. We studied spike activity in this epilepsy to determine their brain generators. Methods: The EEG of 5 patients (ages 7–9) was recorded, spikes were submitted to blind decomposition in independent components (ICs) and those to source analysis (sLORETA), revealing the spike generators. Coherence analysis evaluated the dynamics of the components. Results: Several ICs were recovered for posterior spikes in contrast to central spikes which originated a single one. Coherence analysis supports a model with epileptic activity originating near lateral occipital area and spreading to cortical temporal or parietal areas. Conclusions: Posterior spikes demonstrate rapid spread of epileptic activity to nearby lobes, starting in the lateral occipital area. In contrast, central spikes remain localized in the rolandic fissure. Significance: Rapid spread of posterior epileptic activity in the Panayitopoulos type of occipital lobe epilepsy is responsible for the variable and poorly localized spike EEG. The lateral occipital cortex is the primary generator of the epileptic activity.
Resumo:
We analyzed the coherence of electroencephalographic (EEG) signals recorded symmetrically from the two hemispheres, while subjects (n = 9) were viewing visual stimuli. Considering the many common features of the callosal connectivity in mammals, we expected that, as in our animal studies, interhemispheric coherence (ICoh) would increase only with bilateral iso-oriented gratings located close to the vertical meridian of the visual field, or extending across it. Indeed, a single grating that extended across the vertical meridian significantly increased the EEG ICoh in normal adult subjects. These ICoh responses were obtained from occipital and parietal derivations and were restricted to the gamma frequency band. They were detectable with different EEG references and were robust across and within subjects. Other unilateral and bilateral stimuli, including identical gratings that were effective in anesthetized animals, did not affect ICoh in humans. This fact suggests the existence of regulatory influences, possibly of a top-down kind, on the pattern of callosal activation in conscious human subjects. In addition to establishing the validity of EEG coherence analysis for assaying cortico-cortical connectivity, this study extends to the human brain the finding that visual stimuli cause interhemispheric synchronization, particularly in frequencies of the gamma band. It also indicates that the synchronization is carried out by cortico-cortical connection and suggests similarities in the organization of visual callosal connections in animals and in man.
Resumo:
The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.
Resumo:
Abstract Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object.
Resumo:
The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.
Resumo:
This thesis proposes an integrated holistic approach to the study of neuromuscular fatigue in order to encompass all the causes and all the consequences underlying the phenomenon. Starting from the metabolic processes occurring at the cellular level, the reader is guided toward the physiological changes at the motorneuron and motor unit level and from this to the more general biomechanical alterations. In Chapter 1 a list of the various definitions for fatigue spanning several contexts has been reported. In Chapter 2, the electrophysiological changes in terms of motor unit behavior and descending neural drive to the muscle have been studied extensively as well as the biomechanical adaptations induced. In Chapter 3 a study based on the observation of temporal features extracted from sEMG signals has been reported leading to the need of a more robust and reliable indicator during fatiguing tasks. Therefore, in Chapter 4, a novel bi-dimensional parameter is proposed. The study on sEMG-based indicators opened a scenario also on neurophysiological mechanisms underlying fatigue. For this purpose, in Chapter 5, a protocol designed for the analysis of motor unit-related parameters during prolonged fatiguing contractions is presented. In particular, two methodologies have been applied to multichannel sEMG recordings of isometric contractions of the Tibialis Anterior muscle: the state-of-the-art technique for sEMG decomposition and a coherence analysis on MU spike trains. The importance of a multi-scale approach has been finally highlighted in the context of the evaluation of cycling performance, where fatigue is one of the limiting factors. In particular, the last chapter of this thesis can be considered as a paradigm: physiological, metabolic, environmental, psychological and biomechanical factors influence the performance of a cyclist and only when all of these are kept together in a novel integrative way it is possible to derive a clear model and make correct assessments.
Resumo:
Spectral and coherence methodologies are ubiquitous for the analysis of multiple time series. Partial coherence analysis may be used to try to determine graphical models for brain functional connectivity. The outcome of such an analysis may be considerably influenced by factors such as the degree of spectral smoothing, line and interference removal, matrix inversion stabilization and the suppression of effects caused by side-lobe leakage, the combination of results from different epochs and people, and multiple hypothesis testing. This paper examines each of these steps in turn and provides a possible path which produces relatively ‘clean’ connectivity plots. In particular we show how spectral matrix diagonal up-weighting can simultaneously stabilize spectral matrix inversion and reduce effects caused by side-lobe leakage, and use the stepdown multiple hypothesis test procedure to help formulate an interaction strength.
Resumo:
Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.
Resumo:
La reconnaissance d’objets est une tâche complexe au cours de laquelle le cerveau doit assembler de manière cohérente tous les éléments d’un objet accessible à l’œil afin de le reconnaître. La construction d’une représentation corticale de l’objet se fait selon un processus appelé « bottom-up », impliquant notamment les régions occipitales et temporales. Un mécanisme « top-down » au niveau des régions pariétales et frontales, facilite la reconnaissance en suggérant des identités potentielles de l’objet à reconnaître. Cependant, le mode de fonctionnement de ces mécanismes est peu connu. Plusieurs études ont démontré une activité gamma induite au moment de la perception cohérente de stimuli, lui conférant ainsi un rôle important dans la reconnaissance d’objets. Cependant, ces études ont utilisé des techniques d’enregistrement peu précises ainsi que des stimuli répétitifs. La première étude de cette thèse vise à décrire la dynamique spatio-temporelle de l’activité gamma induite à l’aide de l’électroencéphalographie intracrânienne, une technique qui possède des résolutions spatiales et temporelles des plus précises. Une tâche d’images fragmentées a été conçue dans le but de décrire l’activité gamma induite selon différents niveaux de reconnaissance, tout en évitant la répétition de stimuli déjà reconnus. Afin de mieux circonscrire les mécanismes « top-down », la tâche a été répétée après un délai de 24 heures. Les résultats démontrent une puissante activité gamma induite au moment de la reconnaissance dans les régions « bottom-up ». Quant aux mécanismes « top-down », l’activité était plus importante aux régions occipitopariétales. Après 24 heures, l’activité était davantage puissante aux régions frontales, suggérant une adaptation des procédés « top-down » selon les demandes de la tâche. Très peu d’études se sont intéressées au rythme alpha dans la reconnaissance d’objets, malgré qu’il soit bien reconnu pour son rôle dans l’attention, la mémoire et la communication des régions neuronales distantes. La seconde étude de cette thèse vise donc à décrire plus précisément l’implication du rythme alpha dans la reconnaissance d’objets en utilisant les techniques et tâches identiques à la première étude. Les analyses révèlent une puissante activité alpha se propageant des régions postérieures aux régions antérieures, non spécifique à la reconnaissance. Une synchronisation de la phase de l’alpha était, quant à elle, observable qu’au moment de la reconnaissance. Après 24 heures, un patron similaire était observable, mais l’amplitude de l’activité augmentait au niveau frontal et les synchronies de la phase étaient davantage distribuées. Le rythme alpha semble donc refléter des processus attentionnels et communicationnels dans la reconnaissance d’objets. En conclusion, cette thèse a permis de décrire avec précision la dynamique spatio-temporelle de l’activité gamma induite et du rythme alpha ainsi que d’en apprendre davantage sur les rôles potentiels que ces deux rythmes occupent dans la reconnaissance d’objets.
Resumo:
P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.
Resumo:
Investiga-se diferentes trajetórias de agentes que desenvolvem conjuntos de atividades convergentes para a pecuária bovina de corte na região sudeste do Pará, especificamente no município de São Félix do Xingu, uma nova frente pioneira na Amazônia e uma das zonas de maior índice de desmatamento. Articula-se conceitos de espaço geográfico e território às noções de paradigmas e trajetórias tecnológicas para abordagem multidisciplinar da realidade amazônica, com a mobilização de diversas ferramentas científicas, com destaque para a geografia, economia e antropologia. Para alcançar este objetivo, desenvolveu-se uma metodologia de levantamento e análise de dados chamada de Análise de Coerências Sucessivas com vistas à realização de etnografias de agentes camponeses e patronais para compreender a relação entre as trajetórias que desenvolvem esses agentes e a dinâmica do território. Verifica-se que a relação entre essas duas categorias de agentes é sistêmica, não só na divisão do trabalho quanto na geopolítica de uso do território.
Resumo:
Many studies investigated solar–terrestrial responses (thermal state, O₃ , OH, H₂O) with emphasis on the tropical upper atmosphere. In this paper the Focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) are investigated to study oscillations with the Focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼64 km) during the rising sun spot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations Support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing thesi-milarity of their temporal oscillations. The H₂O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to −0.3 to −0.4, and the Phase lag is 6–10 days at 0.04 hPa. The confidence level of the correlation is ≥99%. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photo dissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC)complete our study. More periods of high common wavelet power of H₂O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level)correlations occur intermittently in the 27 and 13-day band with variable Phase lock behavior. Large Lyman-α oscillations appeared after the solar super storm in July 2012 and the H₂O oscillations show a well pronounced anticorrelation. The competition between advective transport and photo dissociation loss of mesospheric water vapor may explain the sometimes variable Phase relationship of mesospheric H₂O and solar Lyman-α oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.
Resumo:
Current meters measured temperature and velocity on 12 moorings from 1997 to 2014 in the deep Fram Strait between Svalbard and Greenland at the only deep passage from the Nordic Seas to the Arctic Ocean. The sill depth in Fram Strait is 2545 m. The observed temperatures vary between the colder Greenland Sea Deep Water and the warmer Eurasian Basin Deep Water. Both end members show a linear warming trend of 0.11±0.02°C/decade (GSDW) and 0.05±0.01°C/decade (EBDW) in agreement with the deep water warming observed in the basins to the north and south. At the current warming rates, GSDW and EBDW will reach the same temperature of -0.71°C in 2020. The deep water on the approximately 40 km wide plateau near the sill in Fram Strait is a mixture of the two end members with both contributing similar amounts. This water mass is continuously formed by mixing in Fram Strait and subsequently exported out of Fram Strait. Individual measurements are approximately normally distributed around the average of the two end members. Meridionally, the mixing is confined to the plateau region. Measurements less than 20 km to the north and south have properties much closer to the properties in the respective basins (Eurasian Basin and Greenland Sea) than to the mixed water on the plateau. The temperature distribution around Fram Strait indicates that the mean flow cannot be responsible for the deep water exchange across the sill. Rather, a coherence analysis shows that energetic mesoscale flows with periods of approximately 1-2 weeks advect the deep water masses across Fram Strait. These flows appear to be barotropically forced by upper ocean mesoscale variability. We conclude that these mesoscale flows make Fram Strait a hot spot of deep water mixing in the Arctic Mediterranean. The fate of the mixed water is not clear, but after the 1990s, it does not reflect the properties of Norwegian Sea Deep Water. We propose that it currently mostly fills the deep Greenland Sea.