999 resultados para codon usage
Resumo:
We analyzed the codon usage bias of eight open reading frames (ORFs) across up to 79 human papillomavirus (HPV) genotypes from three distinct phylogenetic groups. All eight ORFs across HPV genotypes show a strong codon usage bias, amongst degenerately encoded amino acids, toward 18 codons mainly with T at the 3rd position. For all 18 degenerately encoded amino acids, codon preferences amongst human and animal PV ORFs are significantly different from those averaged across mammalian genes. Across the HPV types, the L2 ORFs show the highest codon usage bias (73.2 +/- 1.6% and the E4 ORFs the lowest (51.1 +/- 0.5%), reflecting as similar bias in codon 3rd position A + T content (L2: 76.1 +/- 4.2%; E4: 58.6 +/- 4.5%). The E4 ORF, uniquely amongst the HPV ORFs, is G + C rich, while the other ORFs are A + T rich. Codon usage bias correlates positively with A + T content at the codon 3rd position in the E2, E6, L1 and L2 ORFs, but negatively in the E4 ORFs. A general conservation of preferred codon usage across human and non-human PV genotypes whether they originate from a same supergroup or not, together with observed difference between the preferred codon usage for HPV ORFs and for genes of the cells they infect, suggests that specific codon usage bias and A + T content variation may somehow increase the replicational fitness of HPVs in mammalian epithelial cells, and have practical implications for gene therapy of HPV infection. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A study od Typanosomatidae GC distribution and codon usage is presented. The codon usage patterns in coincidence with the phylogenetical data are similar in Crithidia and Leishmania, whereas they are more divergent in Trypanosoma brucei and T. cruzi. The analyisis of the GC mutational pressure in these organisms reveals that T. brucei, and to a lesser extent T. cruzi, have envolved towards a more balanced use of all bases, whereas Leishmania and Crithidia retain features of a primeval genetic apparatus. Tables with approximated GC mutational pressure in homologous genes, and codon usage in Trypanosomatidae are presented.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
The psbA gene of the chloroplast genome has a codon usage that is unusual for plant chloroplast genes. In the present study the evolutionary status of this codon usage is tested by reconstructing putative ancestral psbA sequences to determine the pattern of change in codon bias during angiosperm divergence. It is shown that the codon biases of the ancestral genes are much stronger than all extant flowering plant psbA genes. This is related to previous work that demonstrated a significant increase in synonymous substitution in psbA relative to other chloroplast genes. It is suggested, based on the two lines of evidence, that the codon bias of this gene currently is not being maintained by selection. Rather, the atypical codon bias simply may be a remnant of an ancestral codon bias that now is being degraded by the mutation bias of the chloroplast genome, in other words, that the psbA gene is not at equilibrium. A model for the evolution of selective pressure on the codon usage of plant chloroplast genes is discussed.
Resumo:
With more than 10 fully sequenced, publicly available prokaryotic genomes, it is now becoming possible to gain useful insights into genome evolution. Before the genome era, many evolutionary processes were evaluated from limited data sets and evolutionary models were constructed on the basis of small amounts of evidence. In this paper, I show that genes on the Borrelia burgdorferi genome have two separate, distinct, and significantly different codon usages, depending on whether the gene is transcribed on the leading or lagging strand of replication. Asymmetrical replication is the major source of codon usage variation. Replicational selection is responsible for the higher number of genes on the leading strands, and transcriptional selection appears to be responsible for the enrichment of highly expressed genes on these strands. Replicational–transcriptional selection, therefore, has an influence on the codon usage of a gene. This is a new paradigm of codon selection in prokaryotes.
Resumo:
Understanding the factors responsible for variations in mutation patterns and selection efficacy along chromosomes is a prerequisite for deciphering genome sequences. Population genetics models predict a positive correlation between the efficacy of selection at a given locus and the local rate of recombination because of Hill–Robertson effects. Codon usage is considered one of the most striking examples that support this prediction at the molecular level. In a wide range of species including Caenorhabditis elegans and Drosophila melanogaster, codon usage is essentially shaped by selection acting for translational efficiency. Codon usage bias correlates positively with recombination rate in Drosophila, apparently supporting the hypothesis that selection on codon usage is improved by recombination. Here we present an exhaustive analysis of codon usage in C. elegans and D. melanogaster complete genomes. We show that in both genomes there is a positive correlation between recombination rate and the frequency of optimal codons. However, we demonstrate that in both species, this effect is due to a mutational bias toward G and C bases in regions of high recombination rate, possibly as a direct consequence of the recombination process. The correlation between codon usage bias and recombination rate in these species appears to be essentially determined by recombination-dependent mutational patterns, rather than selective effects. This result highlights that it is necessary to take into account the mutagenic effect of recombination to understand the evolutionary role and impact of recombination.
Resumo:
We first review what is known about patterns of codon usage bias in Drosophila and make the following points: (i) Drosophila genes are as biased or more biased than those in microorganisms. (ii) The level of bias of genes and even the particular pattern of codon bias can remain phylogenetically invariant for very long periods of evolution. (iii) However, some genes, even very tightly linked genes, can change very greatly in codon bias across species. (iv) Generally G and especially C are favored at synonymous sites in biased genes. (v) With the exception of aspartic acid, all amino acids contribute significantly and about equally to the codon usage bias of a gene. (vi) While most individual amino acids that can use G or C at synonymous sites display a preference for C, there are exceptions: valine and leucine, which prefer G. (vii) Finally, smaller genes tend to be more biased than longer genes. We then examine possible causes of these patterns and discount mutation bias on three bases: there is little evidence of regional mutation bias in Drosophila, mutation bias is likely toward A+T (the opposite of codon usage bias), and not all amino acids display the preference for the same nucleotide in the wobble position. Two lines of evidence support a selection hypothesis based on tRNA pools: highly biased genes tend to be highly and/or rapidly expressed, and the preferred codons in highly biased genes optimally bind the most abundant isoaccepting tRNAs. Finally, we examine the effect of bias on DNA evolution and confirm that genes with high codon usage bias have lower rates of synonymous substitution between species than do genes with low codon usage bias. Surprisingly, we find that genes with higher codon usage bias display higher levels of intraspecific synonymous polymorphism. This may be due to opposing effects of recombination.
Resumo:
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
SCOPUS: ar.j
Resumo:
Recent evidences indicate that tRNA modifications and tRNA modifying enzymes may play important roles in complex human diseases such as cancer, neurological disorders and mitochondrial-linked diseases. We postulate that expression deregulation of tRNA modifying enzymes affects the level of tRNA modifications and, consequently, their function and the translation efficiency of their tRNA corresponding codons. Due to the degeneracy of the genetic code, most amino acids are encoded by two to six synonymous codons. This degeneracy and the biased usage of synonymous codons cause alterations that can span from protein folding to enhanced translation efficiency of a select gene group. In this work, we focused on cancer and performed a meta-analysis study to compare microarray gene expression profiles, reported by previous studies and evaluate the codon usage of different types of cancer where tRNA modifying enzymes were found de-regulated. A total of 36 different tRNA modifying enzymes were found de-regulated in most cancer datasets analyzed. The codon usage analysis revealed a preference for codons ending in AU for the up-regulated genes, while the down-regulated genes show a preference for GC ending codons. Furthermore, a PCA biplot analysis showed this same tendency. We also analyzed the codon usage of the datasets where the CTU2 tRNA modifying enzyme was found deregulated as this enzyme affects the wobble position (position 34) of specific tRNAs. Our data points to a distinct codon usage pattern between up and downregulated genes in cancer, which might be caused by the deregulation of specific tRNA modifying enzymes. This codon usage bias may augment the transcription and translation efficiency of some genes that otherwise, in a normal situation, would be translated less efficiently.
Resumo:
Protein is an essential component for life, and its synthesis is mediated by codons in any organisms on earth. While some codons encode the same amino acid, their usage is often highly biased. There are many factors that can cause the bias, but a potential effect of mononucleotide repeats, which are known to be highly mutable, on codon usage and codon pair preference is largely unknown. In this study we performed a genomic survey on the relationship between mononucleotide repeats and codon pair bias in 53 bacteria, 68 archaea, and 13 eukaryotes. By distinguishing the codon pair bias from the codon usage bias, four general patterns were revealed: strong avoidance of five or six mononucleotide repeats in codon pairs; lower observed/expected (o/e) ratio for codon pairs with C or G repeats (C/G pairs) than that with A or T repeats (A/T pairs); a negative correlation between genomic GC contents and the o/e ratios, particularly for C/G pairs; and avoidance of C/G pairs in highly conserved genes. These results support natural selection against long mononucleotide repeats, which could induce frameshift mutations in coding sequences. The fact that these patterns are found in all kingdoms of life suggests that this is a general phenomenon in living organisms. Thus, long mononucleotide repeats may play an important role in base composition and genetic stability of a gene and gene functions.
Resumo:
Polynucleotide immunisation with the E7 gene of human papillomavirus (HPV) type 16 induces only moderate levels of immune response, which may in part be due to limitation in E7 gene expression influenced by biased HPV codon usage. Here we compare for expression and immunogenicity polynucleotide expression plasmids encoding wild-type (pWE7) or synthetic codon optimised (pHE7) HPV16 E7 DNA. Cos-1 cells transfected with pHE7 expressed higher levels of E7 protein than similar cells transfected with pW7. C57BL/6 mice and F1 (C57X FVB) E7 transgenic mice immunised intradermally with E7 plasmids produced high levels of anti-E7 antibody. pHE7 induced a significantly stronger E7-specific cytotoxic T-lymphocyte response than pWE7 and 100% tumour protection in C57BL/6 mice, but neither vaccine induced CTL in partially E7 tolerant K14E7 transgenic mice. The data indicate that immunogenicity of an E7 polynucleotide vaccine can be enhanced by codon modification. However, this may be insufficient for priming E7 responses in animals with split tolerance to E7 as a consequence of expression of E7 in somatic cells. (C) 2002 Elsevier Science (USA).
Resumo:
Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.