965 resultados para coconut shell
Resumo:
O crescimento populacional empurra a produção agrícola em direção ao uso intensivo dos agrotóxicos que aumentam a produtividade. Porém, seu uso incorreto pode resultar em grave problema para as estações de tratamento da água e impactar negativamente na saúde pública. Segundo estudos em escala laboratorial, o tratamento convencional, um dos mais utilizados no Brasil, apresenta remoção insignificante do 2,4-D. A adsorção em carvão ativado tem se demonstrado como tecnologia eficiente na remoção de diversos contaminantes, dentre eles os agrotóxicos. Assim, foi avaliada a remoção dos herbicidas 2,4-D e 2,4,5-T e metabólito 2,4-DCP, utilizando o tratamento convencional e a adsorção em coluna de carvão ativado granular em instalação piloto. O carvão ativado granular empregado foi o derivado da casca de coco. A concentração dos herbicidas foi analisada por cromatografia líquida de alta eficiência com detector por arranjo de diodos e extração em fase sólida. A associação do tratamento convencional com a adsorção em carvão ativado granular apresentou elevada remoção do 2,4-D (99%) atingindo concentrações finais abaixo do limite da Portaria MS n° 2914/2011. O tratamento convencional, no entanto, também apresentou remoção do 2,4-D (35 a 59%), sendo o maior percentual obtido na decantação (30 a 52%), indicando que houve interação entre a matéria orgânica natural e o 2,4-D, contribuindo para sua remoção nessa etapa. O 2,4-DCP e 2,4,5-T apresentaram concentrações abaixo do limite de detecção.
Resumo:
O 2,4-diclorofenoxiacético (2,4-D) é um dos herbicidas mais consumidos no Brasil e é preferencialmente usado devido a sua boa seletividade e baixo custo. Possui alta toxidade e baixa biodegradabilidade, oferecendo risco à saúde humana e ao meio ambiente, podendo ser encontrado em solos, águas superficiais e subterrâneas. Estudos mostram que o tratamento convencional da água possui baixa eficácia na remoção de microcontaminantes, com isso várias técnicas têm sido utilizadas na remoção de compostos em água, como a adsorção por carvão ativado. Apresenta-se a adsorção em carvão ativado tem se demonstrado como tecnologia eficiente na remoção de diversos contaminantes, dentre eles os agrotóxicos. Assim, o presente trabalho objetivou avaliar a adsorção do 2,4-D por três carvões ativados em pó (CAP) em água ultrapura e em água bruta do Rio Santa Maria da Vitória. A quantificação do herbicida foi analisada por cromatografia líquida de alta eficiência, após concentração da amostra pelo método de extração em fase sólida. Os ensaios de adsorção foram realizados com carvões ativados derivados da casca de coco (CAP-01), pinus (CAP-02) e palha de café (CAP-03), que foram caracterizados e avaliados na sua capacidade de remoção do 2,4-D nas duas matrizes de água. Dois modelos de isoterma de adsorção, Langmuir e Freundlich, foram aplicados para descrever os dados de adsorção, que indicaram o CAP-02 como o carvão que apresentou a melhor capacidade de adsorção do 2,4-D entre os carvões estudados, tanto em água ultrapura quanto em água bruta. Nos ensaios realizados em água bruta, houve redução da adsorção do 2,4-D para as três amostras de CAP, quando comparado com os ensaios realizados em água ultrapura, indicando interferência de compostos, como a matéria orgânica, no processo de adsorção.
Resumo:
In this study, Disc and honeycomb-shaped activated carbon monoliths were obtained using as a precursor coconut shell, without the use of any binder. Textural characterization was performed by adsorption of N2 at 77 K and immersion calorimetry into benzene. The experimental results showed that the activation with zinc chloride produces a wide development of micropores, yielding micropore volumes between 0,38 and 0,79 cm³ g-1, apparent BET surface area between 725 and 1523 m² g-1 and immersion enthalpy between 73,5 and 164,2 J g-1.Were made comparisons between textural parameters and energy characteristics.
Resumo:
Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production
Resumo:
Cellulolytic enzymatic broth by Trichoderma reesei ATCC 2768 cultived in shaker using cashew apple bagasse and coconut shell bagasse, as substrate for fermentation, was used to investigate the enzymatic hydrolysis of these substrates after pre-treatment with 1 M NaOH, wet-oxidation as well as a combination of these treatments. Hydrolysis runs were carried at 125 rpm, 50ºC and initial pH of 4.8 for 108 hours. Enzymatic broth produced using cashew apple bagasse treated with 1M NaOH (1.337 UI/mL CMCase and 0.074 UI/mL FPase), showed after the hydrolysis an initial of 0.094 g of reducing sugar/g of substrate.h with 96% yield of total reducing sugars while for the coconut shell bagasse treated using the alkaline process (0.640 UI/mL CMCase and 0.070 UI/mL FPase) exhibited an initial hydrolysis velocity of 0.025 g of reducing sugar/g of substrate.h with 48% yield of total reducing sugars. For the treatment with wet-oxidation using cashew apple bagasse as substrate enzymatic broth (0.547 UI/mL CMCase) exhibited an initial hydrolysis velocity of 0.014 g of reducing sugars/g of substrate.h with a lower yield about 89% of total reducing sugars compared to the alkaline treatment. Enzymatic broth produced using coconut shell treated by wet-oxidation showed an initial hydrolysis velocity of 0.029 g of reducing sugar/g of substrate.h with 91% yield. However, when the combination of these two treatments were used it was obtained an enzymatic broth of 1.154 UI/mL CMCase and 0.107 FPase for the cashew apple bagasse as well as 0.538 UI/mL CMCase and 0,013 UI/mL de FPase for the coconut shell bagasse. After hydrolysis, initial velocity was 0.029 g of reducing sugar/g of substrate.h. with 94% yield for the cashew apple bagasse and 0.018 g de reducing sugar/g of substrate.h with 69% yield for coconut shell bagasse. Preliminary treatment improves residues digestibility showing good yields after hydrolysis. In this case, cellulose from the residue can be converted into glucose by cellulolytic enzymes that can be used for ethanol production
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work investigated the potential of different residual lignocellulosic materials generated in rural and urban areas (coconut fibre mature, green coconut shell and mature coconut shell), and vegetable cultivated in inhospitable environments (cactus) aimed at the production of ethanol, being all materials abundant in the Northeast region of Brazil. These materials were submitted to pretreatments with alkaline hydrogen peroxide followed by sodium hydroxide (AHP-SHP), autohydrolysis (AP), hydrothermal catalyzed with sodium hydroxide (HCSHP) and alkali ethanol organosolv (AEOP). These materials pretreated were submitted to enzymatic hydrolysis and strategies of simultaneous saccharification and fermentation (SSF) and saccharification and fermentation semi-simultaneous (SSSF) by Saccharomyces cerevisiae, Zymomonas mobilis and Pichia stipitis. It was also evaluated the presence of inhibitory compounds (hydroxymethylfurfural, furfural, acetic acid, formic acid and levulinic acid) and seawater during the fermentative process. Materials pretreated with AHP-SHP have resulted in delignification of the materials in a range between 54 and 71%, containing between 51.80 and 54.91% of cellulose, between 17.65 and 28.36% of hemicellulose, between 7.99 and 10.12% of lignin. Enzymatic hydrolysis resulted in the conversions in glucose between 68 and 76%. Conversion yields in ethanol using SSF and SSSF for coconut fibre mature pretreated ranged from 0.40 and 0.43 g/g, 0.43 and 0.45 g/g, respectively. Materials pretreated by AP showed yields of solids between 42.92 and 92.74%, containing between 30.65 and 51.61% of cellulose, 21.34 and 41.28% of lignin. Enzymatic hydrolysis resulted in glucose conversions between 84.10 and 92.52%. Proceeds from conversion into ethanol using green coconut shell pretreated, in strategy SSF and SSSF, were between 0.43 and 0.45 g/g. Coconut fibre mature pretreated by HCSHP presented solids yields between 21.64 and 60.52%, with increased in cellulose between 28.40 and 131.20%, reduction of hemicellulose between 43.22 and 69.04% and reduction in lignin between 8.27 and 89.13%. Enzymatic hydrolysis resulted in the conversion in glucose of 90.72%. Ethanol yields using the SSF and SSSF were 0.43 and 0.46 g/g, respectively. Materials pretreated by AEOP showed solid reductions between 10.75 and 43.18%, cellulose increase up to 121.67%, hemicellulose reduction up to 77.09% and lignin reduced up to 78.22%. Enzymatic hydrolysis resulted in the conversion of glucose between 77.54 and 84.27%. Yields conversion into ethanol using the SSF and SSSF with cactus pretreated ranged from 0.41 and 0.44 g/g, 0.43 and 0.46 g/g, respectively. Fermentations carried out in bioreactors resulted in yields and ethanol production form 0.42 and 0.46 g/g and 7.62 and 12.42 g/L, respectively. The inhibitory compounds showed negative synergistic effects in fermentations performed by P. stipitis, Z. mobilis and S. cerevisiae. Formic acid and acetic acid showed most significant effects among the inhibitory compounds, followed by hydroxymethylfurfural, furfural and levulinic acid. Fermentations carried out in culture medium diluted with seawater showed promising results, especially for S. cerevisiae (0.50 g/g) and Z. mobilis (0.49 g/g). The different results obtained in this study indicate that lignocellulosic materials, pretreatments, fermentative processes strategies and the microorganisms studied deserve attention because they are promising and capable of being used in the context of biorefinery, aiming the ethanol production.
Resumo:
This study investigated the physical characteristics of lightweight concrete produced using waste materials as coarse aggregate. The study was inspired by the author’s Peace Corps service in Kilwa, Tanzania. Coconut shell, sisal fiber, and PET plastic were chosen as the test waste products due to their abundance in the area. Two mixes were produced for each waste product and the mix proportions designed for resulting compressive strengths of 3000 and 5000 psi. The proportions were selected based on guidelines for lightweight concrete from the American Concrete Institute. In preparation for mixing, coconut shells were crushed into aggregate no larger than 3/4 inch, sisal fiber was cut into pieces no longer than 3/8 inch, and PET plastic was shredded into 1/4 inch-wide strips no longer than 6 inches. Replicate samples were mixed and then cured for 28 days before they were tested for compressive strength, unit weight, and absorption. The resulting data were compared to ASTM Standards for lightweight concrete masonry units to determine their adequacy. Based on these results, there is potential for coconut shell to be used as coarse aggregate in lightweight concrete. Sisal fiber was unsuccessful in producing the appropriate compressive strength. However, the reduction in spalling of the hardened concrete and the induction of air in the mixes incorporating sisal fiber suggests that it has the potential to improve other characteristics of lightweight concrete. Concrete mixes using PET plastic as aggregate resulted in adequate compressive strengths, but were too dense to be considered ‘lightweight’ concrete. With some adjustments to slightly decrease absorption and unit weight, the PET plastic concrete mixes could be classified as medium weight concrete and, therefore, achieve many of the same benefits as would be seen with lightweight concrete.
Resumo:
There are many opportunities to utilise coconut in Nzema to support farmers. Coconut oil that is mainly used for food preparation in Nzema can be utilized as fuel to support overcoming of the energy crisis in the Ghana. Coconut oil in Nzema is not used in both transportation and electricity generation. A few of the waste husk and shell are mainly used as fuel in homes for heating but greater amount is left to rot or burn the coconut plantation. In addition, some portion of the granulated coconut kernel is sometime used as feed for piggery feed and the rest of the granulated kernel are left as waste on the oil processing site. In this thesis, the author identified alternative utilization of cocoanut, for instance the use of coconut husk and shell for charcoal production, and the use of coconut trunks as construction materials. It is envisaged that exploring these alternatives will not only reduce carbon emission in the country but will also contribute significantly to the sustainability of the local agro-industry.
Resumo:
The extensive backwaters of Kerala are the sites for a flourishing cottage industry - the coir industry. This enterprise almost exclusively located along the 590 km coastal belt of Kerala, provides direct employment to over half a million people in the state and produces nearly 90% of the total coir goods in the world. The shallow bays and lagoons of the 30 backwater systems of the state are traditional areas for the retting of coconut husk for the production of the coir fibre. The paper examines the environmental status of the retting grounds in Kerala, in relation to the biotic communities. The study revealed that retting activity has caused large scale organic pollution along with the mass destruction of the flora and fauna, converting sizeable sections of the backwaters into virtual cesspools of foul smelling stagnant waters. High values of hydrogen sulphide, ammonia, BOD5 associated with anoxic conditions and low community diversity of plankton, benthic fauna, fish, shell fish, wood boring and fouling organisms were the outstanding feature of the retting zones.
Resumo:
A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.
Resumo:
Groundnut shell (GS), after separation of pod, is readily available as a potential feedstock for production of fermentable sugars. The substrate was delignified with sodium sulfite. The delignified substrate released 670 mg/g of sugars after enzymatic hydrolysis (50 degrees C, 120 rpm, 50 hrs) using commercial cellulases (Dyadic Xylanase PLUS, Dyadic Inc. USA). The groundnut shell enzymatic hydrolysate (45.6 g/L reducing sugars) was fermented for ethanol production with free and sorghum stalks immobilized cells of Pichia stipitis NCIM 3498 under submerged cultivation conditions. Immobilization of yeast cells on sorghum stalks were confirmed by scanning electron microscopy (SEM). A maximum of ethanol production (17.83 g/L, yield 0.44 g/g and 20.45 g/L, yield 0.47 g/g) was observed with free and immobilized cells of P. stipitis respectively in batch fermentation conditions. Recycling of immobilized cells showed a stable ethanol production (20.45 g/L, yield 0.47 g/g) up to 5 batches followed by a gradual downfall in subsequent cycles.