977 resultados para coastal erosion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the rate of erosion during the 1951-2006 period on the Bykovsky Peninsula, located north-east of the harbour town of Tiksi, north Siberia. Its coastline, which is characterized by the presence of ice-rich sediment (Ice Complex) and the vicinity of the Lena River Delta, retreated at a mean rate of 0.59 m/yr between 1951 and 2006. Total erosion ranged from 434 m of erosion to 92 m of accretion during these 56 years and exhibited large variability (sigma = 45.4). Ninety-seven percent of the rates observed were less than 2 m/yr and 81.6% were less than 1 m/yr. No significant trend in erosion could be recorded despite the study of five temporal subperiods within 1951-2006. Erosion modes and rates actually appear to be strongly dependant on the nature of the backshore material, erosion being stronger along low-lying coastal stretches affected by past or current thermokarst activity. The juxtaposition of wind records monitored at the town of Tiksi and erosion records yielded no significant relationship despite strong record amplitude for both data sets. We explain this poor relationship by the only rough incorporation of sea-ice cover in our storm extraction algorithm, the use of land-based wind records vs. offshore winds, the proximity of the peninsula to the Lena River Delta freshwater and sediment plume and the local topographical constraints on wave development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal erosion is an important and constant issue facing coastal areas all over the world today. The rate of coastal development over the years has increased, in turn requiring that action be taken to protect structures from the threat of erosion. A review of the causes of coastal erosion and the methods implemented to control it was conducted in order to determine the best course of action in response to coastal erosion issues. The potential positive and negative economic and environmental impacts are key concerns in determining whether or not to restore an eroding beach and which erosion control method(s) to implement. Results focus on providing a comparison of these concerns as well as recommendations for addressing coastal erosion issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a photocopy reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geography of Scotland, with a highly undulating hinterland, long and indented coastline, together with a large number of islands, means that much social and economic activity is largely located at the coast. The importance of the coast is further highlighted by the large number of ecosystem services derived from the coast. The threat posed by climate change, particularly current and future sea level rise, is of considerable concern and the associated coastal erosion and coastal flooding has the potential to have a substantial effect on the socioeconomic activity of the whole country. Currently, the knowledge base of coastal erosion is poor, which serves to hinder the current and future management of the coast. This research reported here aimed to establish four key aspects of coastal erosion within Scotland: the physical susceptibility of the coast to erosion; the assets exposed to coastal erosion; the vulnerability of communities to coastal erosion; and the coastal erosion risk to those communities. Coastal erosion susceptibility was modelled here within a GIS, using data for ground elevation, rockhead elevation, wave exposure and proximity to the open coast. Combining these data produced the Underlying Physical Susceptibility Model (UPSM), in the form of a 50 m2 raster of national coverage. The Coastal Erosion Susceptibility Model (CESM) was produced with the addition of sediment supply and coastal defence data, which then moderates the outputs of the UPSM. Asset data for dwellings, key assets, transport infrastructure, historic assets, and natural assets were used along with the UPSM and CESM to assess their degree of exposure to coastal erosion. A Coastal Erosion Vulnerability Model (CEVM) was produced using Experian Mosaic Scotland (a geodemographic classification which identifies 44 different social groups within Scotland) to classify populations based upon 11 vulnerability variables. Dwellings were assigned a CESM and CEVM score in order to establish their coastal erosion risk. This research demonstrated that the issue of coastal erosion will impact on a relatively low number of properties compared to those impacted by flooding (both coastal and fluvial) as many dwellings are already protected by coastal defences. There is therefore, a considerable future liability, and great pressure for coastal defences to be maintained and upgraded in their current form. The use of the CEVM is a novel inclusion within a coastal erosion assessment for Scotland. Use of the CEVM established that coastal erosion risk is not distributed equally amongst the Scottish coastal population and highlighted that risk can be reduced by either reducing exposure or reducing vulnerability. Thus far in Scotland, reducing exposure has been the primary management approach, which has a number of implications with regards social justice. This research identified the existing data gaps that should be addressed by future research in order to further improve coastal management in Scotland. Future research should focus on assessing historical coastal change rates on a national scale, improve modelling of national scale wave exposure, enhance the information held about current coastal defences and, determine the direct and indirect economic cost associated with the loss of different asset types. It is also necessary to clarify the social justice implications of using adaptation approaches to manage coastal erosion as well as establishing a method to communicate the susceptibility, exposure, vulnerability and risk aspects whilst minimising the potential negative impacts (e.g. property blight) of releasing such information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The community of Ferryland is located on the southeastern coast of the Avalon Peninsula. The town traditionally relied on a fishing-based economy until the collapse of the fishery in the early 1990s. The present economy emphasizes sustainable development in the tourism sector with focus on archaeology, geotourism and other recreational uses. This paper discusses coastal erosion and impacts on sites and infrastructure using methods including: local knowledge, Real Time Kinematic (RTK) surveying and other survey techniques, seawater level measurement, meteorological data from a locally-installed station, custom-made drifter tube buoys, photography, HD video, and investigation using various modes of transport including inflatable boat. The major findings of the study include that the residents and stakeholders are genuinely interested in and knowledgeable of coastal erosion. The causes of coastal erosion include: large waves, surge, longshore currents, harbour oscillations, mass wasting, and location of infrastructure causing alterations of these processes. Freeze-thaw Cycles (FTC), rainfall, and gravity loosen and transport rock, till, and fill materials downslope. Large waves and currents transport the materials alongshore or into the nearshore. Harbour oscillations causing high velocity currents (> 2 m/s) are responsible for shoreline erosion and damage to property in The Pool. Historical resources such as gun batteries and ordnance pieces which date to the 1700s are being lost or threatened through coastal erosion of till and rock cliffs. Improper drainage and maintenance is responsible for erosion of roads and supporting shoulders, necessitating mitigation measures. Sediment transport and deposition during and after large wave and surge events lead to undercutting of infrastructure and increased risk of washover of existing infrastructure. Erosion is ongoing at Bois Island and Ferryland Head Isthmus through slope processes and undercutting; The Pool and the lower Colony of Avalon site through harbour oscillations and related undermining; the tombolo and the main breakwater through wave attack; and Meade’s Cove including the East Coast Trail through wave attack and undercutting. The floor of the latrine in the lower Colony of Avalon site indicates that sea level was approximately 1.25m below present in the 1620s, a relative sea level rise rate of 3.2 mm/y. The recommendations include suggested mitigation to reduce impacts specific to each site.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite an increasing literary focus on climate change adaptation, the facilitation of this adaptation is occurring on a limited basis (Adger et al. 2007) .This limited basis is not necessarily due to inability; rather, a lack of comprehensive cost estimates of all options specifically hinders adaptation in vulnerable communities (Adger et al. 2007). Specifically the estimated cost of the climate change impact of sea-level rise is continually increasing due to both increasing rates and the resulting multiplicative impact of coastal erosion (Karl et al., 2009, Zhang et al., 2004) Based on the 2007 Intergovernmental Panel on Climate Change report, minority groups and small island nations have been identified within these vulnerable communities. Therefore the development of adaptation policies requires the engagement of these communities. State examples of sea-level rise adaptation through land use planning mechanisms such as land acquisition programs (New Jersey) and the establishment of rolling easements (Texas) are evidence that although obscured, adaptation opportunities are being acted upon (Easterling et al., 2004, Adger et al.2007). (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Approximately two-thirds of coastal and Great Lakes states have some type of shoreline construction setback or construction control line requiring development to be a certain distance from the shoreline or other coastal feature (OCRM, 2008). Nineteen of 30 coastal states currently use erosion rates for new construction close to the shoreline. Seven states established setback distances based on expected years from the shoreline: the remainder specify a fixed setback distance (Heinz Report, 2000). Following public hearings by the County of Kauai Planning Commission and Kauai County Council, the ‘Shoreline Setback and Coastal Protection Ordinance’ was signed by the Mayor of Kauai on January 25, 2008. After a year of experience implementing this progressive, balanced shoreline setback ordinance several amendments were recently incorporated into the Ordinance (#887; Bill #2319 Draft 3). The Kauai Planning Department is presently drafting several more amendments to improve the effectiveness of the Ordinance. The intent of shoreline setbacks is to establish a buffer zone to protect shorefront development from loss due to coastal erosion - for a period of time; to provide protection from storm waves; to allow the natural dynamic cycles of erosion and accretion of beaches and dunes to occur; to maintain beach and dune habitat; and, to maintain lateral beach access and open space for the enjoyment of the natural shoreline environment. In addition, a primary goal of the Kauai setback ordinance is to avoid armoring or hardening of the shore which along eroding coasts has been documented to ultimately eliminate the fronting beach. (PDF contains 4 pages)