906 resultados para cloud service
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. ^ In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.^
Resumo:
Postprint
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
In this research, we suggest appropriate information technology (IT) governance structures to manage the cloud computing resources. The interest in acquiring IT resources a utility is gaining momentum. Cloud computing resources present organizations with opportunities to manage their IT expenditure on an ongoing basis, and are providing organizations access to modern IT resources to innovate and manage their continuity. However, cloud computing resources are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to ensure its effective management and fit into existing business processes to leverage the promised opportunities. Using a mixed method design, we identified four possible governance structures for managing the cloud computing resources. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. These governance structures ensure appropriate direction of cloud computing resources from its acquisition to fit into the organizations business processes.
Resumo:
This research suggests information technology (IT) governance structures to manage cloud computing resources. The interest in acquiring IT resources as a utility from the cloud is gaining momentum. Cloud computing resources present organizations with opportunities to manage their IT expenditure on an ongoing basis, and are providing organizations access to modern IT resources to innovate and manage their continuity. However, cloud computing resources are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to manage the cloud resources. The subsequent decisions from these governance structures will ensure effective management of cloud resources. This management will facilitate a better fit of cloud resources into organizations existing processes to achieve business (process-level) and financial (firm-level) objectives. Using a triangulation approach, we suggest four possible governance structures for managing the cloud computing resources. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. We also propose that these governance structures would relate to organizations cloud-related business objectives directly and indirectly to cloud-related financial objectives. Perceptive field survey data from actual and prospective cloud service adopters confirmed that the suggested structures would contribute directly to cloud-related business objectives and indirectly to cloud-related financial objectives.
Resumo:
This research suggests information technology (IT) governance structures to manage the cloud computing services. The interest in acquiring IT resources as a utility from the cloud computing environment is gaining momentum. The cloud computing services present organizations with opportunities to manage their IT expenditure on an ongoing basis, and access to modern IT resources to innovate and manage their continuity. However, the cloud computing services are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to manage the cloud computing services. The subsequent decisions from these governance structures will ensure the effective management of the cloud computing services. This management will facilitate a better fit of the cloud computing services into organizations’ existing processes to achieve the business (process-level) and the financial (firm-level) objectives. Using a triangulation approach, we suggest four governance structures for managing the cloud computing services. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. We also propose that these governance structures would relate directly to organizations cloud computing services-related business objectives, and indirectly to cloud computing services-related financial objectives. Perceptive field survey data from actual and prospective cloud computing service adopters suggest that the suggested governance structures would contribute directly to cloud computing-related business objectives and indirectly to cloud computing-related financial objectives.
Resumo:
With the introduction of the Personally Controlled Health Record (PCEHR), the Australian public is being asked to accept greater responsibility for their healthcare. Although well designed, constructed and intentioned, policy and privacy concerns have resulted in an eHealth model that may impact future health information sharing requirements. Thus an opportunity to transform the beleaguered Australian PCEHR into a sustainable on-demand technology consumption model for patient safety must be explored further. Moreover, the current clerical focus of healthcare practitioners must be renegotiated to establish a shared knowledge creation landscape of action for safer patient interventions. To achieve this potential however requires a platform that will facilitate efficient and trusted unification of all health information available in real-time across the continuum of care. As a conceptual paper, the goal of the authors is to deliver insights into the antecedents of usage influencing superior patient outcomes within an eHealth-as-a-Service framework. To achieve this, the paper attempts to distil key concepts and identify common themes drawn from a preliminary literature review of eHealth and cloud computing concepts, specifically cloud service orchestration to establish a conceptual framework and a research agenda. Initial findings support the authors’ view that an eHealth-as-a-Service (eHaaS) construct will serve as a disruptive paradigm shift in the aggregation and transformation of health information for use as real-world knowledge in patient care scenarios. Moreover, the strategic value of extending the community Health Record Bank (HRB) model lies in the ability to automatically draw on a multitude of relevant data repositories and sources to create a single source of practice based evidence and to engage market forces to create financial sustainability.
Resumo:
There are many applications such as software for processing customer records in telecom, patient records in hospitals, email processing software accessing a single email in a mailbox etc. which require to access a single record in a database consisting of millions of records. A basic feature of these applications is that they need to access data sets which are very large but simple. Cloud computing provides computing requirements for these kinds of new generation of applications involving very large data sets which cannot possibly be handled efficiently using traditional computing infrastructure. In this paper, we describe storage services provided by three well-known cloud service providers and give a comparison of their features with a view to characterize storage requirements of very large data sets as examples and we hope that it would act as a catalyst for the design of storage services for very large data set requirements in future. We also give a brief overview of other kinds of storage that have come up in the recent past for cloud computing.
Resumo:
This paper introduces the original concept of a cloud personal assistant, a cloud service that manages the access of mobile clients to cloud services. The cloud personal assistant works in the cloud on behalf of its owner: it discovers services, invokes them, stores the results and history, and delivers the results to the mobile user immediately or when the user requests them. Preliminary experimental results that demonstrate the concept are included.
Resumo:
The mobile cloud computing paradigm can offer relevant and useful services to the users of smart mobile devices. Such public services already exist on the web and in cloud deployments, by implementing common web service standards. However, these services are described by mark-up languages, such as XML, that cannot be comprehended by non-specialists. Furthermore, the lack of common interfaces for related services makes discovery and consumption difficult for both users and software. The problem of service description, discovery, and consumption for the mobile cloud must be addressed to allow users to benefit from these services on mobile devices. This paper introduces our work on a mobile cloud service discovery solution, which is utilised by our mobile cloud middleware, Context Aware Mobile Cloud Services (CAMCS). The aim of our approach is to remove complex mark-up languages from the description and discovery process. By means of the Cloud Personal Assistant (CPA) assigned to each user of CAMCS, relevant mobile cloud services can be discovered and consumed easily by the end user from the mobile device. We present the discovery process, the architecture of our own service registry, and service description structure. CAMCS allows services to be used from the mobile device through a user's CPA, by means of user defined tasks. We present the task model of the CPA enabled by our solution, including automatic tasks, which can perform work for the user without an explicit request.
The Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions
Resumo:
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft’s cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Resumo:
The simulated annealing approach to crystal structure determination from powder diffraction data, as implemented in the DASH program, is readily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can be achieved by distributing individual DASH runs over a network of computers. The CDASH program delivers this by using scalable on-demand computing clusters built on the Amazon Elastic Compute Cloud service. By way of example, a 360 vCPU cluster returned the crystal structure of racemic ornidazole (Z0 = 3, 30 degrees of freedom) ca 40 times faster than a typical modern quad-core desktop CPU. Whilst used here specifically for DASH, this approach is of general applicability to other packages that are amenable to coarse-grained parallelism strategies.
Resumo:
Cloud computing innebär användning av datorresurser som är tillgängliga via ett nätverk, oftast Internet och är ett område som har vuxit fram i snabb takt under de senaste åren. Allt fler företag migrerar hela eller delar av sin verksamhet till molnet. Sogeti i Borlänge har behov av att migrera sina utvecklingsmiljöer till en molntjänst då drift och underhåll av dessa är kostsamma och tidsödande. Som Microsoftpartners vill Sogeti använda Microsoft tjänst för cloud computing, Windows Azure, för detta syfte. Migration till molnet är ett nytt område för Sogeti och de har inga beskrivningar för hur en sådan process går till. Vårt uppdrag var att utveckla ett tillvägagångssätt för migration av en IT-lösning till molnet. En del av uppdraget blev då att kartlägga cloud computing, dess beståndsdelar samt vilka för- och nackdelar som finns, vilket har gjort att vi har fått grundläggande kunskap i ämnet. För att utveckla ett tillvägagångssätt för migration har vi utfört flera migrationer av virtuella maskiner till Windows Azure och utifrån dessa migrationer, litteraturstudier och intervjuer dragit slutsatser som mynnat ut i ett generellt tillvägagångssätt för migration till molnet. Resultatet har visat att det är svårt att göra en generell men samtidigt detaljerad beskrivning över ett tillvägagångssätt för migration, då scenariot ser olika ut beroende på vad som ska migreras och vilken typ av molntjänst som används. Vi har dock utifrån våra erfarenheter från våra migrationer, tillsammans med litteraturstudier, dokumentstudier och intervjuer lyft vår kunskap till en generell nivå. Från denna kunskap har vi sammanställt ett generellt tillvägagångssätt med större fokus på de förberedande aktiviteter som en organisation bör genomföra innan migration. Våra studier har även resulterat i en fördjupad beskrivning av cloud computing. I vår studie har vi inte sett att någon tidigare har beskrivit kritiska framgångsfaktorer i samband med cloud computing. I vårt empiriska arbete har vi dock identifierat tre kritiska framgångsfaktorer för cloud computing och i och med detta täckt upp en del av kunskapsgapet där emellan.
Resumo:
Under the brand name “sciebo – the Campuscloud” (derived from “science box”) a consortium of more than 20 research and applied science universities started a large scale cloud service for about 500,000 students and researchers in North Rhine-Westphalia, Germany’s most populous state. Starting with the much anticipated data privacy compliant sync & share functionality, sciebo offers the potential to become a more general cloud platform for collaboration and research data management which will be actively pursued in upcoming scientific and infrastructural projects. This project report describes the formation of the venture, its targets and the technical and the legal solution as well as the current status and the next steps.