5 resultados para clastogen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μM lead chloride and 0.05 μM lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μM lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μM. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μM and reached half-maximal inhibition of motility at about 50 μM. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions of chemicals with the microtubular network of cells may lead to genotoxicity. Micronuclei (MN) might be caused by interaction of metals with tubulin and/or kinesin. The genotoxic effects of inorganic lead and mercury salts were studied using the MN assay and the CREST analysis in V79 Chinese hamster fibroblasts. Effects on the functional activity of motor protein systems were examined by measurement of tubulin assembly and kinesin-driven motility. Lead and mercury salts induced MN dose-dependently. The no-effect-concentration for MN induction was 1.1 μM PbCl2, 0.05 μM Pb(OAc)2 and 0.01 μM HgCl2. The in vitro results obtained for PbCl2 correspond to reported MN induction in workers occupationally exposed to lead, starting at 1.2 μM Hg(II) (Vaglenov et al., 2001, Environ. Health Perspect. 109, 295-298). The CREST Analysis indicate aneugenic effects of Pb(II) and aneugenic and additionally clastogenic effects of Hg(II). Lead (chloride, acetate, and nitrate) and mercury (chloride and nitrate) interfered dose-dependently with tubulin assembly in vitro. The no-effect-concentration for lead salts in this assay was 10 μM. Inhibition of tubulin assembly by mercury started at 2 μM. The gliding velocity of microtubules along immobilised kinesin molecules was affected by 25 μM Pb(NO3)2 and 0.1 μM HgCl2 in a dose-dependent manner. Our data support the hypothesis that lead and mercury genotoxicity may result, at least in part, via disturbance of chromosome segregation via interaction with cytoskeletal proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethnopharmacological relevance Dragon's blood is a dark-red sap produced by species from the genus Croton (Euphorbiaceae), which has been used as a famous traditional medicine since ancient times in many countries, with scarce data about its safe use in humans. In this research, we studied genotoxicity and clastogenicity of Croton palanostigma sap using the comet assay and micronucleus test in cells of mice submitted to acute treatment. Material and methods HPLC analysis was performed to identify the main components of the sap. The sap was administered by oral gavage at doses of 300 mg/kg, 1000 mg/kg and 2000 mg/kg. For the analysis, the comet assay was performed on the leukocytes and liver cells collected 24 h after treatment, and the micronucleus test (MN) on bone marrow cells. Cytotoxicity was assessed by scoring 200 consecutive polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). Results and conclusion The alkaloid taspine was the main compound indentified in the crude sap of Croton palanostigma. The results of the genotoxicity assessment show that all sap doses tested produced genotoxic effects in leukocytes and liver cells and also produced clastogenic/aneugenic effects in bone marrow cells of mice at the two higher doses tested. The PCE/NCE ratio indicated no cytotoxicity. The data obtained suggest caution in the use of Croton palanostigma sap by humans considering its risk of carcinogenesis. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mercury rejected in the water system, from mining operations and lixiviation of soils after deforestation, is considered to be the main contributors to the contamination of the ecosystem in the Amazon Basin. The objectives of the present study were to examine cytogenetic functions in peripheral lymphocytes within a population living on the banks of the Tapajós River with respect to methylmercury (MeHg) contamination, using hair mercury as a biological indicator of exposure. Our investigation shows a clear relation between methylmercury contamination and cytogenetic damage in lymphocytes at levels well below 50 micrograms/gram, the level at which initial clinical signs and symptoms of mercury poisoning occur. The first apparent biological effect with increasing MeHg hair level was the impairment of lymphocyte proliferation measured as mitotic index (MI). The relation between mercury concentration in hair and MI suggests that this parameter, an indicator of changes in lymphocytes and their ability to respond to culture conditions, may be an early marker of cytotoxicity and genotoxicity in humans and should be taken into account in the preliminary evaluation of the risks to populations exposed in vivo. This is the first report showing clear cytotoxic effects of long-term exposure to MeHg. Although the results strongly suggest that, under the conditions examined here, MeHg is both a spindle poison and a clastogen, the biological significance of these observations are as yet unknown. A long-term follow-up of these subjects should be undertaken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Locus content maps are derived from monosomic or disomic chromosomes broken by radiation, shearing, or other clastogen, the fragments being distributed among clones by dilution or incorporation into the cells of another species and scored for segregation of markers. Locus content maps provide evidence about radiosensitivity of chromosome regions, support for order, and approximate location. Omission of the most aberrant and least informative clones increases efficiency of localization. Correct analysis must allow for preferential retention of certain sequences, monosomy or polysomy of donor chromosomes, and error filtration. Combination of these refinements extracts substantially more information from fewer clones. Because of unmodeled peculiarities in the data, the best analysis does not recover the physical map but roughly localizes markers that may be monomorphic and therefore unsuitable for linkage mapping. As with linkage for polymorphic loci, distance in the composite map should be confirmed by physical methods.