1000 resultados para classificação digital de imagens


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remotely sensed imagery has been widely used for land use/cover classification thanks to the periodic data acquisition and the widespread use of digital image processing systems offering a wide range of classification algorithms. The aim of this work was to evaluate some of the most commonly used supervised and unsupervised classification algorithms under different landscape patterns found in Rondônia, including (1) areas of mid-size farms, (2) fish-bone settlements and (3) a gradient of forest and Cerrado (Brazilian savannah). Comparison with a reference map based on the kappa statistics resulted in good to superior indicators (best results - K-means: k=0.68; k=0.77; k=0.64 and MaxVer: k=0.71; k=0.89; k=0.70 respectively for three areas mentioned). Results show that choosing a specific algorithm requires to take into account both its capacity to discriminate among various spectral signatures under different landscape patterns as well as a cost/benefit analysis considering the different steps performed by the operator performing a land cover/use map. it is suggested that a more systematic assessment of several options of implementation of a specific project is needed prior to beginning a land use/cover mapping job.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dados de sensoriamento remoto têm sido largamente utilizados para classificação da cobertura e uso da terra, em particular graças à aquisição periódica de imagens de satélite e à generalização dos sistemas de processamento digital de imagens, que oferecem uma variedade de algoritmos de classificação de imagens. Este trabalho teve por objetivo avaliar alguns dos métodos mais comuns de classificações supervisionadas e não supervisionadas para imagens do sensor TM do satélite Landsat-5, em três áreas com diferentes padrões de paisagem em Rondônia: (1) áreas de fazendas de "Médio porte", (2) assentamentos no padrão "Espinha de peixe" e (3) áreas de contato entre floresta e "Cerrado". A comparação com um mapa de referência baseado na estatística Kappa produziu indicadores de desempenho bons ou superiores (melhores resultados - K-médias: k = 0,68; k = 0,77; k = 0,64 e MaxVer: k = 0,71; k = 0,89; k = 0,70, respectivamente nas três áreas citadas), para os algoritmos utilizados. Os resultados indicaram que a escolha de um algoritmo deve considerar tanto a capacidade de discriminar várias assinaturas espectrais em diferentes padrões de paisagem quanto a relação custo/benefício decorrente das várias etapas do trabalho dos operadores que elaboram um mapa de cobertura e uso da terra. Este trabalho apontou a necessidade de esforço mais sistemático de avaliação prévia de várias opções de execução de um projeto específico antes de se iniciar o trabalho de elaboração de um mapa de cobertura e uso da terra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to discriminate vegetation classes throught remote sensing images from the satellite CBERS-2, related to winter and summer seasons in the Campos Gerais region Paraná State, Brazil. The vegetation cover of the region presents different kinds of vegetations: summer and winter cultures, reforestation areas, natural areas and pasture. Supervised classification techniques like Maximum Likelihood Classifier (MLC) and Decision Tree were evaluated, considering a set of attributes from images, composed by bands of the CCD sensor (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture models (soil, shadow, vegetation) and the two first main components. The evaluation of the classifications accuracy was made using the classification error matrix and the kappa coefficient. It was defined a high discriminatory level during the classes definition, in order to allow separation of different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and the kappa coefficient was 0.9389 for the scene 157/128. For the scene 158/127, the values were 88% and 0.8667, respectively. The classification accuracy by MLC was 84.86% and the kappa coefficient was 0.8099 for the scene 157/128. For the scene 158/127, the values were 77.90% and 0.7476, respectively. The results showed a better performance of the Decision Tree classifier than MLC, especially to the classes related to cultivated crops, indicating the use of the Decision Tree classifier to the vegetation cover mapping including different kinds of crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A utilização de matéria-prima de origem florestal aumentou significativamente nas últimas décadas. A busca por alta produtividade concretizou-se com a introdução de espécies exóticas, principalmente Eucalyptus sp. e Pinus sp. Neste trabalho avaliou-se a precisão da classificação digital obtida no levantamento de povoamentos florestais implantados e naturais da área da carta de Cachoeira do Sul - RS, utilizando técnicas de geoprocessamento, sensoriamento remoto, SIG (sistema de informação geográfica) e GPS (sistema de posicionamento global). Verificou-se que a área é ocupada por vegetação natural (35,54%), Pinus sp. (1,89%) e Eucalyptus sp. (0,77%), cuja precisão na classificação supervisionada digital foi: Exatidão global (85,23%), Kappa (84,90%) e Tau (77,74%). Concluiu-se que os três índices de acurácia podem ser utilizados, apesar de os índices Kappa e Tau mostrarem-se mais consistentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho apresenta uma alternativa ao processo de classificação do defeito da segregação central em amostras de aço, utilizando as imagens digitais que são geradas durante o ensaio de Baumann. O algoritmo proposto tem como objetivo agregar as técnicas de processamento digital de imagens e o conhecimento dos especialistas sobre o defeito da segregação central, visando a classificação do defeito de referência. O algoritmo implementado inclui a identificação e a segmentação da linha segregada por meio da aplicação da transformada de Hough e limiar adaptativo. Adicionalmente, o algoritmo apresenta uma proposta para o mapeamento dos atributos da segregação central nos diferentes graus de severidade do defeito, em função dos critérios de continuidade e intensidade. O mapeamento foi realizado por meio da análise das características individuais, como comprimento, largura e área, dos elementos segmentados que compõem a linha segregada. A avaliação do desempenho do algoritmo foi realizada em dois momentos específicos, de acordo com sua fase de implementação. Para a realização da avaliação, foram analisadas 255 imagens de amostras reais, oriundas de duas usinas siderúrgicas, distribuídas nos diferentes graus de severidade. Os resultados da primeira fase de implementação mostram que a identificação da linha segregada apresenta acurácia de 93%. As classificações oriundas do mapeamento realizado para as classes de criticidade do defeito, na segunda fase de implementação, apresentam acurácia de 92% para o critério de continuidade e 68% para o critério de intensidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Projeto Indicação de Procedência Campanha coordenado pela Embrapa Uva e Vinho é um estudo multidisciplinar cujo foco é a caracterização da área da indicação geográfica vitivinícola, limitada a oeste pela Argentina, a sul-sudoeste pelo Uruguai, abrangendo grande parte da ?Metade Sul? do Estado do Rio Grande do Sul. A viticultura ocorre em polos produtores sob condições de uso da terra diversos e distantes entre si dentro da região. Então, foram definidos nove setores de ocorrência de vinhedos, onde foi testado o método de classificação digital de imagem (PDI). A escolha da setorização para emprego de PDI se baseia na premissa de que quanto menor a região melhor seria a identificação das classes de uso por uma imagem de satélite com melhor resolução possível, propiciando qualidade maior de classificação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um dos maiores desafios tecnológicos no presente é o de se conseguir gerar e manter, de uma maneira eficiente e consistente, uma base de dados de objectos multimédia, em particular, de imagens. A necessidade de desenvolver métodos de pesquisa automáticos baseados no conteúdo semântico das imagens tornou-se de máxima importância. MPEG-7 é um standard que descreve o contudo dos dados multimédia que suportam estes requisitos operacionais. Adiciona um conjunto de descritores audiovisuais de baixo nível. O histograma é a característica mais utilizada para representar as características globais de uma imagem. Neste trabalho é usado o “Edge Histogram Descriptor” (EHD), que resulta numa representação de baixo nível que permite a computação da similaridade entre imagens. Neste trabalho, é obtida uma caracterização semântica da imagem baseada neste descritor usando dois métodos da classificação: o algoritmo k Nearest Neighbors (k-NN) e uma Rede Neuronal (RN) de retro propagação. No algoritmo k-NN é usada a distância Euclidiana entre os descritores de duas imagens para calcular a similaridade entre imagens diferentes. A RN requer um processo de aprendizagem prévia, que inclui responder correctamente às amostras do treino e às amostras de teste. No fim deste trabalho, será apresentado um estudo sobre os resultados dos dois métodos da classificação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi utilizar a classificação orientada a objetos em imagens TM/ Landsat‑5, para caracterizar classes de uso e cobertura da terra, na região do Médio Araguaia. A cena 223/068, adquirida em 5/9/2010, foi submetida a correção radiométrica, atmosférica e geométrica, como etapas de pré‑processamento. Em seguida, foram geradas duas imagens por meio das matemáticas de bandas espectrais do índice de vegetação por diferença normalizada (NDVI) e do índice de água por diferença normalizada modificado (MNDWI), utilizados na classificação de imagens. Para a segmentação destas, utilizaram-se os parâmetros de escala 250, 200, 150, 100, 50, os algoritmos "assign class" e "nearest neighbor", e os descritores de média, área e relação de borda. Foi empregada matriz de confusão, para avaliar a acurácia da classificação, por meio do coeficiente de exatidão global e do índice de concordância Kappa. A exatidão global para o mapeamento foi de 83,3%, com coeficiente Kappa de 0,72. A classificação foi feita quanto às fitofisionomias do Cerrado, ao uso antrópico e urbano da terra, a corpos d'água e a bancos de areia. As matemáticas de bandas espectrais utilizadas apresentam resultados promissores no delineamento das classes de cobertura da terra no Araguaia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o uso da análise digital de imagens na diagnose nutricional de N no feijoeiro. Foram avaliados quatro tratamentos, em que se combinaram duas doses de N e de P aplicadas ao solo. Na emissão de vagens, determinou-se o índice de clorofila Falker, digitalizaram-se as imagens dos trifólios e determinou-se o teor foliar de N. Nas imagens, foi atribuída uma nota com o programa AFSoft, baseada na área ocupada por padrões de verde. O teor foliar de N correlacionou-se ao índice de clorofila Falker e à nota atribuída com o AFSoft, mas a correlação entre o índice de clorofila e a nota AFSoft foi superior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A espécie florestal Myracrodruon urundeuva (Fr. All.) figura desde 1992 na lista de espécies da flora brasileira ameaçadas de extinção e, contudo, manifesta comportamento monodominante em algumas regiões do Estado de Minas Gerais, sobretudo na região do Médio Rio Doce. Este trabalho teve por objetivo comparar métodos de classificação supervisionada de imagens Rapideye para mapeamento de fragmentos florestais monodominados por Myracrodruon urundeuva em Tumiritinga, MG. Foram avaliadas a classificação pelo algoritmo da Maximaverossimilhança (Maxver) e a classificação por Redes Neurais Artificiais (RNA). Foram testadas 19 combinações envolvendo diferentes bandas, componentes principais e o índice de vegetação da diferença normalizada para a classificação da imagem Rapideye. O treinamento da rede foi realizado variando-se a taxa de aprendizado, o número de interações e o número de neurônios na camada interna. A avaliação dos mapas temáticos produzidos foi realizada através dos índices Kappa e Kappa condicional para a classe de uso do solo "aroeira" e pela análise das Matrizes de Confusão. O método que apresentou melhor desempenho foi a classificação de todas as bandas da imagem Rapideye pelo algoritmo Maxver, apresentando coeficientes Kappa 80 e Kappa condicional 90. O mapa temático gerado teve exatidão do usuário igual a 93% e exatidão do produtor igual a 90%, sendo as maiores confusões do classificador para a classe Aroeira Monodominante acometidas entre as classes Mata Nativa e Pasto Manejado. Da imagem temática produzida, extraiu-se a informação de que 22% do Município de Tumiritinga se encontrava sob ocupação da aroeira em monodominância. A análise do uso e cobertura do solo no município não retrata, na região de estudo, o quadro anunciado de espécie ameaçada de extinção, no qual M. urundeuva se encontra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A maior dificuldade na medição de escoamentos de líquidos é com campos em velocidades acima de 0,5 m/s. O processamento “PIV” (Velocimetria por processamento de Imagens de Partículas) com iluminação a Laser contínua (não pulsada), utilizando câmeras CCD possibilitou a análise de quadros em seqüências de imagens capturadas na velocidade convencional de 30 quadros/s, com bons resultados para deslocamentos lentos < 0,5 m/s. Para velocidades maiores esta técnica torna-se inviável. A imagem das partículas forma um rastro, não permitindo a identificação da partícula singela. Com a introdução recente de câmeras digitais rápidas com velocidade de obturação controlada tornou-se possível a medida de fluidos em deslocamentos rápidos. O presente trabalho apresenta duas técnicas “intraframe” (dentro do quadro de imagem) para análise de escoamentos, em velocidades na ordem 2 m/s, utilizando câmeras CCD-DV e gravação digital em fita DVT (digital video tape). A primeira programando a câmera no modo progressivo, imagens são capturadas em velocidades de obturação diferentes resultando num rastro caracterizado pelo deslocamento das partículas, proporcional ao vetor velocidade. A segunda programando a câmera no modo entrelaçado, a imagem é capturada em dois campos intercalados na velocidade de obturação desejada, obtendo-se uma imagem dupla capturada em tempos diferentes, montada pelo campo ímpar e o campo par, entrelaçado entre um e o outro A câmera captura e grava o evento na velocidade de obturação variável de 1/30 por segundo até 1/10000 por segundo, requerida para observar-se os deslocamentos entre os campos. Uma placa de aquisição digitaliza a imagem a ser processada. Um algoritmo baseado nas técnicas de processamento de imagens, determina os múltiplos deslocamentos das partículas apresentando o diagrama bidimensional com os vetores velocidade.