394 resultados para cisplatin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cisplatin, a major antineoplastic drug used in the treatment of solid tumors, is a known nephrotoxin. This retrospective cohort study evaluated the prevalence and severity of cisplatin nephrotoxicity in 54 children and its impact on height and weight.We recorded the weight, height, serum creatinine, and electrolytes in each cisplatin cycle and after 12 months of treatment. Nephrotoxicity was graded as follows: normal renal function (Grade 0); asymptomatic electrolyte disorders, including an increase in serum creatinine, up to 1.5 times baseline value (Grade 1); need for electrolyte supplementation <3 months and/or increase in serum creatinine 1.5 to 1.9 times from baseline (Grade 2); increase in serum creatinine 2 to 2.9 times from baseline or need for electrolyte supplementation for more than 3 months after treatment completion (Grade 3); and increase in serum creatinine ≥3 times from baseline or renal replacement therapy (Grade 4).Nephrotoxicity was observed in 41 subjects (75.9%). Grade 1 nephrotoxicity was observed in 18 patients (33.3%), Grade 2 in 5 patients (9.2%), and Grade 3 in 18 patients (33.3%). None had Grade 4 nephrotoxicity. Nephrotoxicity patients were younger and received higher cisplatin dose, they also had impairment in longitudinal growth manifested as statistically significant worsening on the height Z Score at 12 months after treatment. We used a multiple logistic regression model using the delta of height Z Score (baseline-12 months) as dependent variable in order to adjust for the main confounder variables such as: germ cell tumor, cisplatin total dose, serum magnesium levels at 12 months, gender, and nephrotoxicity grade. Patients with nephrotoxicity Grade 1 where at higher risk of not growing (OR 5.1, 95% CI 1.07-24.3, P=0.04). The cisplatin total dose had a significant negative relationship with magnesium levels at 12 months (Spearman r=-0.527, P=<0.001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently no pharmacogenomics-based criteria exist to guide clinicians in identifying individuals who are at risk of hearing loss from cisplatin-based chemotherapy. This review summarizes findings from pharmacogenomic studies that report genetic polymorphisms associated with cisplatin-induced hearing loss and aims to (1) provide up-to-date information on new developments in the field; (2) provide recommendations for the use of pharmacogenetic testing in the prevention, assessment and management of cisplatin-induced hearing loss in children and adults; and (3) identify knowledge gaps to direct and prioritize future research. These practice recommendations for pharmacogenetic testing in the context of cisplatin-induced hearing loss reflect a review and evaluation of recent literature and are designed to assist clinicians in providing optimal clinical care for patients receiving cisplatin based chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomeres play an important role in the immortalization of proliferating cells. The long tandem repeats of 5′-TTAGGG-3′ sequences in human telomeres are potential targets for the anticancer drug cisplatin, which forms mainly intrastrand d(GpG) and d(ApG) cross-links on DNA. The present study reveals that telomeres in cisplatin-treated HeLa cells are markedly shortened and degraded. A dose that killed 61% of the cells but allowed one round of cell division resulted in shortened telomeres before the induction of apoptosis. Higher doses of cisplatin halted cell cycle progression during the first S phase and triggered apoptosis followed by degradation of telomere repeats. A model in which both cell division with incomplete replication and induction of apoptosis by cisplatin could occur was devised to explain the drug-induced telomere loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic mapping of traits and mutations in mammals is dependent upon linkage analysis. The resolution achieved by this method is related to the number of offspring that can be scored and position of crossovers near a gene. Higher precision mapping is obtained by expanding the collection of progeny from an appropriate cross, which in turn increases the number of potentially informative recombinants. A more efficient approach would be to increase the frequency of recombination, rather than the number of progeny. The anticancer drug cisplatin, which causes DNA strand breakage and is highly recombinogenic in some model organisms, was tested for its ability to induce germ-line recombination in mice. Males were exposed to cisplatin and mated at various times thereafter to monitor the number of crossovers inherited by offspring. We observed a striking increase on all three chromosomes examined and established a regimen that nearly doubled crossover frequency. The timing of the response indicated that the crossovers were induced at the early pachytene stage of meiosis I. The ability to increase recombination should facilitate genetic mapping and positional cloning in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of Å6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. Å6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, Å6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of Å6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or Å6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving Å6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testicular cancers respond favorably to chemotherapy with the platinum-containing drug cis-diamminedichloroplatinum(II) (cisplatin). One factor that could explain the efficacy of cisplatin is the low frequency of p53 mutations observed in this tumor type. The present study examines the p53-mediated responses in murine testicular teratocarcinoma cells exposed to the drug. Cisplatin treatment of teratocarcinoma cells with a wild-type p53 gene resulted in accumulation of the p53 protein through posttranscriptional mechanisms; induction of p53-target genes was also observed. Drug treatment resulted in rapid apoptosis in p53-wild-type cells but not in p53−/− teratocarcinoma cells. In the latter cells, cisplatin exposure caused prolonged cell cycle arrest accompanied by induction of the p21 gene. Clonogenic assays demonstrated that the p53 mutation did not confer resistance to cisplatin. These experiments suggest that cisplatin inhibits cellular proliferation of testicular teratocarcinoma cells by two possible mechanisms, p53-dependent apoptosis and p53-independent cell cycle arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

cis-Diamminedichloroplatinum(II) (cisplatin) is a widely used anticancer drug that binds to and crosslinks DNA. The major DNA adduct of the drug results from coordination of two adjacent guanine bases to platinum to form the intrastrand crosslink cis-[Pt(NH3)2[d(GpG)-N7(1), -N7(2)]] (cis-Pt-GG). In the present study, spectroscopic and calorimetric techniques were employed to characterize the influence of this crosslink on the conformation, thermal stability, and energetics of a site-specifically platinated 20-mer DNA duplex. CD spectroscopic and thermal denaturation data revealed that the crosslink alters the structure of the host duplex, consistent with a shift from a B-like to an A-like conformation; lowers its thermal stability by approximately 9 degrees C; and reduces its thermodynamic stability by 6.3 kcal/mol at 25 degrees C, most of which is enthalpic in origin; but it does not alter the two-state melting behavior exhibited by the parent, unmodified duplex, despite the significant crosslink-induced changes noted above. The energetic consequences of the cis-Pt-GG crosslink are discussed in relation to the structural perturbations it induces in DNA and to how these crosslink-induced perturbations might modulate protein binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial and mammalian mismatch repair systems have been implicated in the cellular response to certain types of DNA damage, and genetic defects in this pathway are known to confer resistance to the cytotoxic effects of DNA-methylating agents. Such observations suggest that in addition to their ability to recognize DNA base-pairing errors, members of the MutS family may also respond to genetic lesions produced by DNA damage. We show that the human mismatch recognition activity MutSalpha recognizes several types of DNA lesion including the 1,2-intrastrand d(GpG) crosslink produced by cis-diamminedichloroplatinum(II), as well as base pairs between O6-methylguanine and thymine or cytosine, or between O4-methylthymine and adenine. However, the protein fails to recognize 1,3-intrastrand adduct produced by trans-diamminedichloroplatinum(II) at a d(GpTpG) sequence. These observations imply direct involvement of the mismatch repair system in the cytotoxic effects of DNA-methylating agents and suggest that recognition of 1,2-intrastrand cis-diamminedichloroplatinum(II) adducts by MutSalpha may be involved in the cytotoxic action of this chemotherapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the capacity of calf thymus DNA polymerases alpha, beta, delta, and epsilon to perform in vitro translesion synthesis on a substrate containing a single d(GpG)-cisplatin adduct placed on codon 13 of the human HRAS gene. We found that DNA synthesis catalyzed by DNA polymerases alpha, delta, and epsilon was blocked at the base preceding the lesion. Addition of proliferating cell nuclear antigen to DNA polymerase delta and replication protein A to DNA polymerase alpha did not restore their capacity to elongate past the adduct. On the other hand, DNA polymerase beta efficiently bypassed the cisplatin adduct. Furthermore, we observed that DNA polymerase beta was the only polymerase capable of primer extension of a 3'-OH located opposite the base preceding the lesion. Likewise, DNA polymerase beta was able to elongate the arrested replication products of the other three DNA polymerases, thus showing its capacity to successfully compete with polymerases alpha, delta, and epsilon in the stalled replication complex. Our data suggest (i) a possible mechanism enabling DNA polymerase beta to bypass a d(GpG)-cisplatin adduct in vitro and (ii) a role for this enzyme in processing DNA damage in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.