996 resultados para chromosome structure


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chromosome rearrangements involved in the formation of merodiploid strains in the Bacillus subtilis 168-166 system were explained by postulating the existence of intrachromosomal homology regions. This working hypothesis was tested by analysing sequences and restriction patterns of the, as yet uncharacterized, junctions between chromosome segments undergoing rearrangements in parent, 168 trpC2 and 166 trpE26, as well as in derived merodiploid strains. Identification, at the Ia/Ib chromosome junction of both parent strains, of a 1.3 kb segment nearly identical to a segment of prophage SPbeta established the existence of one of the postulated homology sequences. Inspection of relevant junctions revealed that a set of different homology regions, derived from prophage SPbeta, plays a key role in the formation of so-called trpE30, trpE30+, as well as of new class I merodiploids. Analysis of junctions involved in the transfer of the trpE26 mutation, i.e. simultaneous translocation of chromosome segment C and rotation of the terminal relative to the origin moiety of the chromosome, did not confirm the presence of any sequence suitable for homologous recombination. We propose a model involving simultaneous introduction of four donor DNA molecules, each comprising a different relevant junction, and their pairing with the junction regions of the recipient chromosome. The resolution of this structure, resting on homologous recombination, would confer the donor chromosome structure to the recipient, achieving some kind of 'transstamping'. In addition, a rather regular pattern of inverse and direct short sequence repeats in regions flanking the breaking points could be correlated with the initial, X-ray-induced, rearrangement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BIMD of Aspergillus nidulans belongs to a highly conserved protein family implicated, in filamentous fungi, in sister-chromatid cohesion and DNA repair. We show here that BIMD is chromosome associated at all stages, except from late prophase through anaphase, during mitosis and meiosis, and is involved in several aspects of both programs. First, bimD+ function must be executed during S through M. Second, in bimD6 germlings, mitotic nuclear divisions and overall cellular program occur more rapidly than in wild type. Thus, BIMD, an abundant chromosomal protein, is a negative regulator of normal cell cycle progression. Third, bimD6 reduces the level of mitotic interhomolog recombination but does not alter the ratio between crossover and noncrossover outcomes. Moreover, bimD6 is normal for intrachromosomal recombination. Therefore, BIMD is probably not involved in the enzymology of recombinational repair per se. Finally, during meiosis, staining of the Sordaria ortholog Spo76p delineates robust chromosomal axes, whereas BIMD stains all chromatin. SPO76 and bimD are functional homologs with respect to their roles in mitotic chromosome metabolism but not in meiosis. We propose that BIMD exerts its diverse influences on cell cycle progression as well as chromosome morphogenesis and recombination by modulating chromosome structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (Jose-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La division cellulaire est un processus fondamental des êtres vivants. À chaque division cellulaire, le matériel génétique d'une cellule mère est dupliqué et ségrégé pour produire deux cellules filles identiques; un processus nommé la mitose. Tout d'abord, la cellule doit condenser le matériel génétique pour être en mesure de séparer mécaniquement et également le matériel génétique. Une erreur dans le niveau de compaction ou dans la dynamique de la mitose occasionne une transmission inégale du matériel génétique. Il est suggéré dans la littérature que ces phénomènes pourraient causé la transformation des cellules cancéreuses. Par contre, le mécanisme moléculaire générant la coordination des changements de haut niveau de la condensation des chromosomes est encore incompris. Dans les dernières décennies, plusieurs approches expérimentales ont identifié quelques protéines conservées dans ce processus. Pour déterminer le rôle de ces facteurs dans la compaction des chromosomes, j'ai effectué un criblage par ARNi couplé à de l'imagerie à haute-résolution en temps réel chez l'embryon de C. elegans. Grâce à cette technique, j'ai découvert sept nouvelles protéines requises pour l'assemblage des chromosomes mitotiques, incluant la Ribonucléotide réductase (RNR) et Topoisomérase II (topo-II). Dans cette thèse, je décrirai le rôle structural de topo-II dans l'assemblage des chromosomes mitotiques et ces mécanismes moléculaires. Lors de la condensation des chromosomes, topo-II agit indépendamment comme un facteur d'assemblage local menant par la suite à la formation d'un axe de condensation tout au long du chromosome. Cette localisation est à l'opposé de la position des autres facteurs connus qui sont impliqués dans la condensation des chromosomes. Ceci représente un nouveau mécanisme pour l'assemblage des chromosomes chez C. elegans. De plus, j'ai découvert un rôle non-enzymatique à la protéine RNR lors de l'assemblage des chromosomes. Lors de ce processus, RNR est impliqué dans la stabilité des nucléosomes et alors, permet la compaction de haut niveau de la chromatine. Dans cette thèse, je rapporte également des résultats préliminaires concernant d'autres nouveaux facteurs découverts lors du criblage ARNi. Le plus important est que mon analyse révèle que la déplétion des nouvelles protéines montre des phénotypes distincts, indiquant la fonction de celles-ci lors de l'assemblage des chromosomes. Somme toute, je conclus que les chromosomes en métaphase sont assemblés par trois protéines ayant des activités différentes d'échafaudage: topoisomérase II, les complexes condensines et les protéines centromériques. En conclusion, ces études prouvent le mécanisme moléculaire de certaines protéines qui contribuent à la formation des chromosomes mitotiques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cytogenetic study was carried out with 5-azacytidine (5-azaC) and etoposide (VP-16) in CHO-K1 and XRS-5 (mutant cells deficient for double-strand break rejoining) cell lines to verify the interaction effects of the drugs in terms of induction of chromosomal aberrations. 5-azaC is incorporated into DNA causing DNA hypomethylation, and VP-16 (inhibitor of topoisomerase 11 enzyme) is a potent clastogenic agent. Cells in exponential growth were treated with 5-azaC for I h, following incubation for 7 h, and posttreatment with VP16 for the last 3 h. In K1 cells, the combined treatments induced a significant reduction in the aberrations induced in the X and A (autosome) chromosomes, which are the main target for 5-azaC. However, in XRS-5 cells, the drug combination caused a significant increase in the aberrations induced in those chromosomes, but with a concomitant reduction in the randomly induced-aberrations. In addition, each cell line presented characteristic cell cycle kinetics; while the combined treatment induced an S-arrest in K1 cells, alterations in cell cycle progression were not found for XRS-5, although each drug alone caused a G2-arrest. The different cell responses presented by the cell lines may be explained on the basis of the evidence that alterations in chromatin structure caused by 5-aza-C probably occur to a different extent in K1 and XRS-5 cells, since the mutant cells present a typical hyper-condensed chromosome structure (especially the X- and A chromosomes), but, alternatively, 5-aza-C could induce reactivation of DNA repair genes in XRS-5 cells. Teratogenesis Carcinog. Mutagen. Suppl. 1:171-186, 2003. (C) 2003 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of the heterochromatic bands in mitotic chromosomes of the important tropical aquaculture species of tilapia, Oreochromis niloticus, was investigated by the combination of the C-banding technique, chromosomal digestion with two restriction endonucleases and fluorescence in situ hybridization (FISH) of two satellite DNAs (SATA and SATB). The tilapia chromosomes presented heterochromatic bands in the centromeres and in the short arms of almost all chromosomes that were differentially digested by the restriction endonucleases HaeIII and EcoRI. FISH of SATA showed that the satellite sequence is distributed in the centromeric region of all chromosomes of tilapia. FISH also revealed an intense hybridization signal for SATB in only one chromosome pair, but less intense signals were also present in several other pairs. The digestion of tilapia chromosomes by HaeIII and EcoRI was positively correlated with the position of SATA and SATB in chromosomes as revealed by FISH. The results obtained may be useful in future molecular and genetic studies of tilapias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different cytogenetic techniques were used to analyse the chromosomes of Prochilodus lineatus with the main objective of comparing the base composition of A- and B-chromosomes. The results of digestion of chromosomes with 10 different restriction endonucleases (REs), silver staining, CMA(3) staining and C-banding indicated the existence of different classes of highly repetitive DNA in the A-set and also suggested the existence of compositional differences between the chromatin of A- and B-chromosomes. The 5-BrdU incorporation technique showed a late replicating pattern in all B-chromosomes and in some heterochromatic pericentromeric regions of A-chromosomes. The cleavage with RE BamHI produced a band pattern in all chromosomes of P. lineatus which permitted the tentative pairing of homologues in the karyotype of this species. We concluded that the combined use of the above techniques can contribute to the correct identification of chromosomes and the karyotypic analysis in fishes. on the basis of the results, some aspects of chromosome structure and the origin of the B-chromosomes in P. lineatus are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agarose gels stained with Ethidium bromide and Southern blot experiments of HindIII-digested genomic DNA of Achirus lineatus evidenced the presence of monomers and multimers of a DNA segment of about 200 bp, named here Al-HindIII sequence. No signals were observed in Southern blot experiments with genomic DNA of other flatfish species. The DNA sequencing of four recombinant clones showed that Al-HindIII sequences had 204 bp and were 63.72% AT-rich. FISH experiments using a Al-HindIII sequence as probe showed bright signals in the centromeric position of all chromosomes of A. lineatus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The salivary glands of Drosophila saltans ( saltans group, saltans subgroup) analyzed in an advanced stage of programmed cell death showed the appearance of a single, round, nucleolar corpuscle inside the highly altered nucleus of every gland cell, at a time during which the integrity of the original nucleolus was already lost and the original nucleolar material apparently disappeared. In the same nuclei, which already had also lost the characteristic chromosome structure, some delicate chromosome threads were maintained. In many cells, the new nucleolar corpuscle and these chromosome threads are associated. These findings are novel. However, the hypothesis put forward concerning their meaning remains dependent on other studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four fish species of the family Pimelodidae were analyzed. Bergiaria westermani and two different Pimelodus species have the same diploid chromosome number (2n - 56). Despite some differences in chromosome structure, these species are highly similar in karyotype and differ from Pimelodella sp., which presents a reduction in chromosome number to 2n = 46. The data confirm the extensive chromosome variability existing in this family, characterized by intraindividual and/or population polymorphisms of a structural nature which may or may not be sexlinked, and by the presence of supernumerary chromosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitotic and meiotic chromosomes of the beetles Epicauta atomaria (Meloidae) and Palembus dermestoides (Tenebrionidae) were analysed using standard staining, C-banding and silver impregnation techniques. We determine the diploid and haploid chromosome numbers, the sex determination system and describe the chromosomal morphology, the C-banding pattern and the chromosome(s) bearing NORs (nucleolar organizer regions). Both species shown 2n = 20 chromosomes, the chromosomal meioformula 9 + Xyp, and regular chromosome segregation during anaphases I and II. The chromosomes of E. atomaria are basically metacentric or submetacentric and P. dermestoides chromosomes are submetacentric or subtelocentric. In both beetles the constitutive heterochromatin is located in the pericentromeric region in all autosomes and in the Xp chromosome; additional C-bands were observed in telomeric region of the short arm in some autosomes in P. dermestoides. The yp chromosome did not show typical C-bands in these species. As for the synaptonemal complex, the nucleolar material is associated to the 7th bivalent in E. atomaria and 3rd and 7th bivalents in P. dermestoides. Strong silver impregnated material was observed in association with Xyp in light and electron microscopy preparations in these species and this material was interpreted to be related to nucleolar material.