975 resultados para chromosome deletion 7
Resumo:
An interstitial deletion of 7q21 was found in a boy with mental retardation, microcephaly, convergent strabismus, micrognathia, genital anomalies, and other findings, including ectrodactyly.
Resumo:
We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study.
Resumo:
The molecular characterization of balanced chromosomal rearrangements have always been of advantage in identifying disease-causing genes. Here, we describe the breakpoint mapping of a de novo balanced translocation t(7;12)(q11.22;q14.2) in a patient presenting with a failure to thrive associated with moderate mental retardation, facial anomalies, and chronic constipation. The localization of the breakpoints and the co-occurrence of Williams-Beuren syndrome and 12q14 microdeletion syndrome phenotypes suggested that the expression of some of the dosage-sensitive genes of these two segmental aneuploidies were modified in cells of the proposita. However, we were unable to identify chromosomes 7 and/or 12-mapping genes that showed disturbed expression in the lymphoblastoids of the proposita. This case showed that position-effect might operate in some tissues, but not in others. It also illustrates the overlap of phenotypes presented by patients with the recently described 12q14 structural rearrangements.
Resumo:
A four-year-old girl with deletion of chromosomal band 6q24 → qter is described. Clinical features include growth and psychomotor retardation, microcephaly, convergent strabismus, bulbous nose, long philtrum, short neck and cardiopathy.
Resumo:
Copy number variations (CNVs) as described in the healthy population are purported to contribute significantly to genetic heterogeneity. Recent studies have described CNVs using lymphoblastoid cell lines or by application of specifically developed algorithms to interrogate previously described data. However, the full extent of CNVs remains unclear. Using high-density SNP array, we have undertaken a comprehensive investigation of chromosome 18 for CNV discovery and characterisation of distribution and association with chromosome architecture. We identified 399 CNVs, of which loss represents 98%, 58% are less than 2.5 kb in size and 71% are intergenic. Intronic deletions account for the majority of copy number changes with gene involvement. Furthermore, one-third of CNVs do not have putative breakpoints within repetitive sequences. We conclude that replicative processes, mediated either by repetitive elements or microhomology, account for the majority of CNVs in the healthy population. Genomic instability involving the formation of a non-B structure is demonstrated in one region.
Resumo:
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+), but not paternal (m+/p-), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.
Resumo:
We estimate the incidence of cystic fibrosis in Ireland to be at least 1 case per 1838 live births. We have analysed DNA from 44 Irish CF patients for the presence of deletion 508, using the polymerase chain reaction. The deletion was found in 76% of their chromosomes, and approximately 58% of the patients are homozygous for this deletion. Our results are not significantly different from those found in Canadian or UK patient populations, in which frequencies are higher than those found in Southern European countries.
Resumo:
Williams-Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion of 1.55 Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be linked to the specific cognitive profile and craniofacial features. These insights for genotype-phenotype correlations came from the molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS physical phenotype and normal IQ, who carries a shorter 1 Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients.
Resumo:
B6D2F1 mice (45/group) were treated with N-butyl-N-(4- hydroxybutyl)nitrosamine (BBN) or uracil as follows: Group 1 received 0.05% BBN in drinking water for the entire experiment, Group 2 received 5 mg of BBN by gastric gavage in 0.1 mL of 20% ethanol twice per week for 10 wk, Group 3 received a 2.5% uracil-containing diet for the entire experiment, and Group 4 was controls (received 0.1 mL of 20% ethanol by gavage twice per week for 10 wk). The surviving mice in Group 1 were killed after week 26 and those in the other groups after week 30. By week 15, three of 11 Group 1 and one of 15 Group 2 mice had bladder carcinoma. By 26 and 30 wk, respectively, invasive carcinomas were observed in 33 of 34 and six of 21 mice in Groups 1 and 2 and renal pelvic carcinomas in 11 of 34 and three of 21 mice in Groups 1 and 2. Four of 19 uracil-treated mice had bladder nodular hyperplasia. By polymerase chain reaction-single-strand conformation polymorphism and sequence analyses, 16 of 20 and two of five bladder carcinomas from Groups 1 and 2, respectively, showed mutations in the p53 gene. Ha-ras mutation was present in one case. Loss of heterozygosity analysis with simple-sequence length polymorphism markers for chromosome 4 showed that 10 of 21, two of 15, and nine of 13 mice in Groups 1-3, respectively, had heterozygous or homozygous deletions. B6D2F1 mice are therefore susceptible to the urothelial carcinogenic effects of BBN and develop frequent p53 mutations and chromosome 4 deletions. Chromosome 4 deletions were also seen with uracil.
Resumo:
Aim: To investigate the occurrence of chromosome 3, 7, 8, 9, and 17 aneuploidies, TP53 gene deletion and p53 protein expression in chronic gastritis, atrophic gastritis and gastric ulcer, and their association with H pylori infection. Methods: Gastric biopsies from normal mucosa (NM, n = 10), chronic gastritis (CG, n = 38), atrophic gastritis (CAG, n = 13) and gastric ulcer (GU, n = 21) were studied using fluorescence in situ hybridization (FISH) and immunohistochemical assay. A modified Giemsa staining technique and PCR were used to detect H pylori. An association of the gastric pathologies and aneuploidies with H pylori infection was assessed. Results: Aneuploidies were increasingly found from CG (21%) to CAG (31%) and to GU (62%), involving mainly monosomy and trisomy 7, trisomies 7 and 8, and trisomies 7, 8 and 17, respectively. A significant association was found between H pylori infection and aneuploidies in CAG (P = 0.0143) and GU (P = 0.0498). No TP53 deletion was found in these gastric lesions, but p53-positive immunoreactivity was detected in 45% (5/11) and 12% (2/17) of CG and GU cases, respectively. However, there was no significant association between p53 expression and H pylori infection. Conclusion: The occurrence of aneuploidies in benign lesions evidences chromosomal instability in early stages of gastric carcinogenesis associated with H pylori infection, which may confer proliferative advantage. The increase of p53 protein expression in CG and GU may be due to overproduction of the wild-type protein related to an inflammatory response in mucosa. © 2006 The WJG Press. All rights reserved.
Resumo:
Smith-Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ∼139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS. © 2012 Macmillan Publishers Limited All rights reserved.
A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value.
Resumo:
To obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high-resolution single nucleotide polymorphism mapping array analysis in 114 samples alongside 258 samples analyzed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8p (25%), 12p (15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescence in situ hybridization and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes that have functions relevant to myeloma biology. Taken together, these analyses indicate that the crucial pathways in myeloma pathogenesis include the nuclear factor-κB pathway, apoptosis, cell-cycle regulation, Wnt signaling, and histone modifications. This study was registered at http://isrctn.org as ISRCTN68454111.
Resumo:
The highly polymorphic fourth component of human complement (C4) is usually encoded by two genes, C4A and C4B, adjacent to the 21-hydroxylase (21-OH) genes and is also remarkable by the high frequency of the null alleles, C4A*Q0 and C4B*Q0. Complete C4 deficiency is exceptional because this condition appears only in homozygotes for the very rare double-null haplotype C4AQ0,BQ0. This condition in most cases gives rise to systemic lupus erythematosus and an increased susceptibility to infections. The molecular basis for complete C4 deficiency has not yet been established. Therefore we studied the DNA of three previously described C4 deficient patients belonging to unrelated families by restriction fragment length polymorphism analysis using C4 and 21-OH probes. These studies revealed a deletion of the C4B and 21-OHA genes in two patients and no deletion at all in the third patient. Therefore, complete C4 deficiency as a result of homozygosity for the C4AQ0, BQ0 haplotype is not a consequence of a deletion of the C4 genes. The molecular basis of this genetic abnormality is certainly very complex and may vary also from one case to another.
Resumo:
Paratelmatobius and Scythrophrys are leptodactylid frogs endemic to the Brazilian Atlantic forest and their close phylogenetic relationship was recently inferred in an analysis that included Paratelmatobius sp. and S. sawayae. To investigate the interspecific relationships among Paratelmatobius and Scythrophrys species, we analyzed a mitochondrial region (approximately 2.4 kb) that included the ribosomal genes 12S and 16S and the tRNAval in representatives of all known localities of these genera and in 54 other species. Maximum parsimony inferences were done using PAUP* and support for the clades was evaluated by bootstrapping. A cytogenetic analysis using Giemsa staining, C-banding and silver staining was also done for those populations of Paratelmatobius not included in previous cytogenetic studies of this genus in order to assess their karyotype differentiation. Our results suggested Paratelmatobius and Scythrophrys formed a clade strongly supported by bootstrapping, which corroborated their very close phylogenetic relationship. Among the Paratelmatobius species, two clades were identified and corroborated the groups P. mantiqueira and P. cardosoi previously proposed based on morphological characters. The karyotypes of Paratelmatobius sp. 2 and Paratelmatobius sp. 3 described here had diploid chromosome number 2n = 24 and showed many similarities with karyotypes of other Paratelmatobius representatives. The cytogenetic data and the phylogenetic analysis allowed the proposal/corroboration of several hypotheses for the karyotype differentiation within Paratelmatobius and Scythrophrys. Namely the telocentric pair No. 4 represented a synapomorphy of P. cardosoi and Paratelmatobius sp. 2, while chromosome pair No. 5 with interstitial C-bands could be interpreted as a synapomorphy of the P. cardosoi group. The NOR-bearing chromosome No. 10 in the karyotype of P. poecilogaster was considered homeologous to chromosome No. 10 in the karyotype of Scythrophrys sp., chromosome No. 9 in the karyotype of Paratelmatobius sp. 1, chromosome No. 8 in the karyotypes of Paratelmatobius sp. 2 and of Paratelmatobius sp. 3, and chromosome No. 7 in the karyotype of P. cardosoi. A hypothesis for the evolutionary divergence of these NOR-bearing chromosomes, which probably involved events like gain in heteochromatin, was proposed.