972 resultados para chromosome 19q
Resumo:
A series of human-rodent somatic cell hybrids were investigated by Southern blot analysis for the presence or absence of twenty-six molecular markers and three isozyme loci from human chromosome 19. Based on the co-retention of these markers in the various independent hybrid clones containing portions of human chromosome 19 and on pulsed field mapping, chromosome 19 is divided into twenty ordered regions. The most likely marker order for the chromosome is: (LDLR, C3)-(cen-MANNB)-D19S7-PEPD-D19S9-GPI-TGF$ \beta$-(CYP2A, NCA, CGM2, BCKAD)-PSG1a-(D19S8, XRCC1)-(D19S19, ATP1A3)-(D19S37, APOC2)-CKMM-ERCC2-ERCC1-(D19S62, D19S51)-D19S6-D19S50-D19S22-(CGB, FTL)-qter.^ The region of 19q between the proximal marker D19S7 and the distal gene coding for the beta subunit of chorionic gonadotropin (CGB) is about 37 Mb in size and covers about 37 cM genetic distance. The ration of genetic to physical distance on 19q is therefore very close to the genomic average OF 1 cM/Mb. Estimates of physical distances for intervals between chromosome 19 markers were calculated using a mapping function which estimates distances based on the number of breaks in hybrid clone panels. The consensus genetic distances between individual markers (established at HBM10) were compared to these estimates of physical distances. The close agreement between the two estimates suggested that spontaneously broken hybrids are as appropriate for this type of study as radiation hybrids.^ All three DNA repair genes located on chromosome 19 were found to have homologues on Chinese hamster chromosome 9, which is hemizygous in CHO cells, providing an explanation for the apparent ease with which mutations at these loci were identified in CHO cells. Homologues of CKMM and TGF$\beta$ (from human chromosome 19q) and a mini-satellite DNA specific to the distal region of human chromosome 19q were also mapped to Chinese hamster 9. Markers from 19p did not map to this hamster chromosome. Thus the q-arm of chromosome 19, at least between the genes PEPD and ERCC1, appears to be a linkage group which is conserved intact between humans and Chinese hamsters. ^
Resumo:
Platelet count is a highly heritable trait with genetic factors responsible for around 80% of the phenotypic variance. We measured platelet count longitudinally in 327 monozygotic and 418 dizygotic twin pairs at 12, 14 and 16 years of age. We also performed a genome-wide linkage scan of these twins and their families in an attempt to localize QTLs that influenced variation in platelet concentrations. Suggestive linkage was observed on chromosome 19q13.13-19q13.31 at 12 (LOD=2.12, P=0.0009), 14 (LOD=2.23, P=0.0007) and 16 (LOD=1.01, P=0.016) years of age and multivariate analysis of counts at all three ages increased the LOD to 2.59 (P=0.0003). A possible candidate in this region is the gene for glycoprotein VI, a receptor involved in platelet aggregation. Smaller linkage peaks were also seen at 2p, 5p, 5q, 10p and 15q. There was little evidence for linkage to the chromosomal regions containing the genes for thrombopoietin (3q27) and the thrombopoietin receptor (1q34), suggesting that polymorphisms in these genes do not contribute substantially to variation in platelet count between healthy individuals.
Resumo:
Objective. Ankylosing spondylitis (AS) is a debilitating chronic inflammatory condition with a high degree of familiality (λs=82) and heritability (>90%) that primarily affects spinal and sacroiliac joints. Whole genome scans for linkage to AS phenotypes have been conducted, although results have been inconsistent between studies and all have had modest sample sizes. One potential solution to these issues is to combine data from multiple studies in a retrospective meta-analysis. Methods: The International Genetics of Ankylosing Spondylitis Consortium combined data from three whole genome linkage scans for AS (n=3744 subjects) to determine chromosomal markers that show evidence of linkage with disease. Linkage markers typed in different centres were integrated into a consensus map to facilitate effective data pooling. We performed a weighted meta-analysis to combine the linkage results, and compared them with the three individual scans and a combined pooled scan. Results: In addition to the expected region surrounding the HLA-B27 gene on chromosome 6, we determined that several marker regions showed significant evidence of linkage with disease status. Regions on chromosome 10q and 16q achieved 'suggestive' evidence of linkage, and regions on chromosomes 1q, 3q, 5q, 6q, 9q, 17q and 19q showed at least nominal linkage in two or more scans and in the weighted meta-analysis. Regions previously associated with AS on chromosome 2q (the IL-1 gene cluster) and 22q (CYP2D6) exhibited nominal linkage in the meta-analysis, providing further statistical support for their involvement in susceptibility to AS. Conclusion: These findings provide a useful guide for future studies aiming to identify the genes involved in this highly heritable condition. . Published by on behalf of the British Society for Rheumatology.
Genomic Signatures Predict Poor Outcome in Undifferentiated Pleomorphic Sarcomas and Leiomyosarcomas
Resumo:
Undifferentiated high-grade pleomorphic sarcomas (UPSs) display aggressive clinical behavior and frequently develop local recurrence and distant metastasis. Because these sarcomas often share similar morphological patterns with other tumors, particularly leiomyosarcomas (LMSs), classification by exclusion is frequently used. In this study, array-based comparative genomic hybridization (array CGH) was used to analyze 20 UPS and 17 LMS samples from untreated patients. The LMS samples presented a lower frequency of genomic alterations compared with the UPS samples. The most frequently altered UPS regions involved gains at 20q13.33 and 7q22.1 and losses at 3p26.3. Gains at 8q24.3 and 19q13.12 and losses at 9p21.3 were frequently detected in the LMS samples. Of these regions, gains at 1q21.3, 11q12.2-q12.3, 16p11.2, and 19q13.12 were significantly associated with reduced overall survival times in LMS patients. A multivariate analysis revealed that gains at 1q21.3 were an independent prognostic marker of shorter survival times in LMS patients (HR = 13.76; P = 0.019). Although the copy number profiles of the UPS and LMS samples could not be distinguished using unsupervised hierarchical clustering analysis, one of the three clusters presented cases associated with poor prognostic outcome (P = 0.022). A relative copy number analysis for the ARNT, SLC27A3, and PBXIP1 genes was performed using quantitative real-time PCR in 11 LMS and 16 UPS samples. Gains at 1q21-q22 were observed in both tumor types, particularly in the UPS samples. These findings provide strong evidence for the existence of a genomic signature to predict poor outcome in a subset of UPS and LMS patients. © 2013 Silveira et al.
Resumo:
The age distribution and incidence of loss of heterozygosity (LOH) of 1p and 19q was analyzed in 85 oligodendroglial tumors WHO II and III. The peak of tumor manifestation was in the age group of 35 to 55 years. There was no association between age at diagnosis and LOH incidence. We conclude that the prognostic effect of age on survival is not mediated by LOH 1p/19q.
Resumo:
Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equits burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
With respect to localization, oligodendrogliomas are characterized by a marked preponderance of the cerebral hemispheres. Outside these typical sites, any tumor histopathologically reminiscent of oligodendroglioma a priori is likely to represent one of its morphological mimics, including clear cell ependymoma, neurocytoma, pilocytic astrocytoma or glioneuronal tumors. This is particularly relevant as several of the latter are in principle curable by surgery. Among extrahemispherical sites, bona fide oligodendroglioma - as characterized by loss of heterozygosity (LOH) of chromosome arms 1p and 19q - so far has not been documented to occur in the brain stem. Here, we report the case of a 55-year-old female patient with an anaplastic oligodendroglioma (WHO grade III) of the brain stem and cerebellum diagnosed by stereotactic biopsy and featuring combined LOH of 1p and 19q. A morphological peculiarity was a population of interspersed tumor giant cells, a phenomenon that has been referred to as polymorphous oligodendroglioma. Our findings confirm the notion that - although very infrequently - true oligodendrogliomas do occur in the infratentorial compartment.
Resumo:
Professionals working in disability services often encounter clients who have chromosome disorders such as Williams, Angelman or Down syndromes. As chromosome testing becomes increasingly sophisticated, however, more people are being diagnosed with very rare chromosome disorders that are identified not by a syndrome name, but rather by a description of the number, size and shape of their chromosomes (called the karyotype) or by a report of chromosome losses and gains detected through an advanced process known as microarray-based comparative genomic hybridisation (array CGH). For practitioners who work with individuals with rare chromosome disorders and their families, a basic level of knowledge about the evolving field of genetics, as well as specific knowledge about chromosome abnormalities, is essential since they must be able to demonstrate their knowledge and skills to clients (Simic & Turk, 2004). In addition, knowledge about the developmental consequences of various rare chromosome disorders is important for guiding prognoses, expectations, decisions and interventions. The current article provides information that aims to help practitioners work more effectively with this population. It begins by presenting essential information about chromosomes and their numerical and structural abnormalities and then considers the developmental consequences of rare chromosome disorders through a critical review of relevant literature.
Resumo:
Abstract Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9.
Resumo:
The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.
Resumo:
Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 9p involved in the development of melanoma. Although LOH at 9p has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 9p. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations by single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele. Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748 the markers closest to CDKN2A. Of the remaining 11 tumors with LOH 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion. This report supports the conclusions of previous studies that a least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.