11 resultados para chromitite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Santa Cruz massif, which forms part of the Ipanema mafic/ultramafic Complex, Minas Gerais, Brazil, has an exposed upward sequence of metadunite, metaharzburgite (including three separate chromitite layers), metapyroxenite, metagabbro, and metaanorthosite. Primary igneous chromite grains in the main chromitite layer are poikiloblastic and tectonically fragmented, and have a narrow (10-20 mum) margin of chromian spinel. Cataclased chromite fragments are extensively replaced and mantled by chromian spinel; they have a composite margin comprised of an inner zone of more aluminous spinel and an euhedral outer zone of more Cr-rich spinel, representing granulite and amphibolite facies metamorphic events, respectively. The contents of platinum-group elements (PGE) and Au in chromite separates are relatively high (Os 45, Ir 23, Ru 136, Rh 19, Pt 98, Pd 63, and Au 83 ppb), and significantly enriched (similar to 4x) over whole rock values. Platinum-group minerals are not observed and micrometre-sized inclusions of sulfide minerals (chalcopyrite and pentlandite) in relict chromite are rare. However, comparison of mineral proportions in the separated chromite and whole rock shows that the precious metals are hosted predominantly in the relict igneous chromite grains, rather than the secondary chromian spinel and primary and secondary Mg-rich silicates. The major element composition and average chondrite-normalized PGE pattern of the separated chromite correspond to S-poor stratiform chromitite. We suggest that the precious metals accumulated with chromite during crystallization of a S-poor magma, and were not remobilized in the relict chromite during the subsequent high grade metamorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil does not have working platinum mines, nor even large reserves of the platinum metals, but there is platinum in Brazil. In this paper, four massifs (mafic/ultramafic complexes) in eastern Brazil, in the states of Minas Gerais and Ceara, where platinum is found will be described. Three of these massifs contain concentrations of platinum group minerals or platinum group elements, and gold, associated with the chromitite rock found there. In the fourth massif, in Minas Gerais State, the platinum group elements are found in alluvial deposits at the Bom Sucesso occurrence. This placer is currently being studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Neoarchean layered anorthositic complex at Sittampundi in southern India is known for its chromitite layers that are mostly associated with anorthosite (An(90-100)). The chromitites contain FeAl-rich chromites concentrated in layers between amphibole-rich layers with a dominant mineralogy of amphibole-spinel-plagiocase+/-sapphirine. The chromite-rich layers contain only amphibole and plagioclase. Mineral compositions illustrated by X-ray composition maps and profiles show subtle chemical differences. The chrome spinels are of refractory grade with Cr2O3 and Al2O3 contents varying between 34-40 wt.% and 23-28 wt.%. The chromite compositions are noticeably different from those in layered igneous intrusions of the Bushveld-Stillwater type. The existence of original highly calcic plagioclase, FeAl-rich chromite, and magmatic amphibole is consistent with derivation from a parental magma of hydrous tholeiitic composition that was most likely generated in a supra-subduction zone arc setting. In terms of mineralogy and field relations, the Sittampundi chromitites are remarkably similar to anorthosite-hosted chromitites in the Neoarchean Fiskensset anorthositic complex, Greenland. We propose that the Sittampundi chromitites formed by partial melting of unusually aluminous harzburgite in a hydrated mantle wedge above a subduction zone. This melting process produced hydrous, aluminous basalt, which fractionated at depth to give rise to a variety of high-alumina basalt compositions from which the anorthositic complex with its cumulate chromite-rich and amphibole-rich layers formed within the magma chamber of a supra-subduction zone arc. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monazite from chromitites of Cedrolina (Goias State, Brazil) was investigated by electron microprobe and Raman spectroscopy. Monazite has been rarely encountered in chromitites. In Brazil, it was previously reported from chromitites of the Campo Formoso layered intrusion. Comparison between the two occurrences indicates similar morphology and textural characteristics, but remarkable differences in chemical composition. In both cases, monazite occurs as irregular grains (up to 200 mu m) preferentially located in the chlorite-serpentine matrix of the chromitite, more rarely included in chromite. However, the monazite from Cedrolina is characterized by higher Ce/La ratio, and Pr, Nd, Th contents, compared with the monazite from Campo Formoso. The obtained Raman spectra are very similar in the two cases, suggesting that the compositional variation of monazites and the spectral resolution of the Raman do not allow a conclusive chemical analysis with Raman spectra. Textural evidence indicates that, in both occurrences, monazite precipitation did not take place at high temperature, concomitantly with the host chromitite. In the Campo Formoso chromitites, precipitation of monazite has been related with percolation of hydrothermal, aqueous and acid fluids emanating from a granite batholith. on the contrary, the Cedrolina monazite probably formed during one of the metamorphic events that affected the area in which the host chromitite occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metaultramafic bodies tectonically emplaced within the metasedimentary sequence of the Araxá Group are associated with an ophiolitic melange in southeast Goiás. In the region of Crominia - Mairipotaba, they occur as lenticular bodies aligned E-W. Cumulate textures and geochemical data indicate that the parent rocks had harzburgitic to dunitic compositions. Relicts of primary crystals of olivine and orthopyroxene are suggestive of amphibolite facies metamorphic re-equilibration fabrics, even though the paragenesis and mineral associations of these metaultramafic rocks are typical of greenschist facies (T < 550°C and P = 5.5 kbar). The chromitites exhibit massive to breccioid structure and pull-apart texture, with chromite crystals around 0.5 mm in size. Chromite concentrations in the chromitite levels reach 70 to 85% by volume of the rock. The crystals are dispersed in the matrix, which is composed essentially of serpentine, and subordinately of chlorite and talc. The textures and geochemical data (Cr 2O 3 x TiO 2 and Mg x Cr ratios present in the chromitite) are similar to those observed in ophiolitic complexes. Hence, they correspond to allochthonous bodies (Alpine type) associated with an ophiolitic mélange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of platinum-group-minerals (PGM) have been found to occur associated with the chromitite and dunite layers in the Niquelandia igneous complex. Two genetically distinct populations of PGM have been identified corresponding to phases crystallized at high temperatures (primary), and others formed or modified during post-magmatic serpentinization and lateritic weathering (secondary). Primary PGM have been found in moderately serpentinized chromitite and dunite, usually included in fresh chromite grains or partially oxidized interstitial sulfides. Due to topographically controlled lateritic weathering, the silicate rocks are totally transformed to a smectite-kaolinite-garnierite-amorphous silica assemblage, while the chromite is changed into a massive aggregate of a spinel phase having low-Mg and a low Fe3+/Fe2+ ratio, intimately associated with Ti-minerals, amorphous Fe-hydroxides, goethite, hematite and magnetite. The PGM in part survive alteration, and in part are corroded as a result of deep chemical weathering. Laurite is altered to Ru-oxides or re-crystallizes together with secondary Mg-ilmenite. Other PGM, especially the Pt-Fe alloys, re-precipitate within the altered chromite together with kaolinite and Fe-hydroxides. Textural evidence suggests that re-deposition of secondary PGM took place during chromite alteration, controlled by variation of the redox conditions on a microscopic scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultramafic rocks occur scattered along a 300 km long NNW-SSE trending belt, parallel to the central Peruvian Andes in the Cordillera Oriental, from Tarma (Junín Dept.) to Huancapallac and Tingo María (Huánuco Dept.). The Tarma occurrences (Tapo and Acobamba) are dealt with here, as the first step of a broader research. The Tapo massif comprises strongly tectonised serpentinites with scarce peridotitic relics, amphibolites and podiform chromitites. It was overthrust on early Carboniferous metasedimentary rocks of the Andean basement (Ambo Group), and it shows evidences of a pre-Andean deformational history, not observed in the Ambo Group; the basal thrust plane is folded by the Andean tectonics. The two smaller Acobamba occurrences are also allochtonous and show similar tectonic features. Major and trace element composition of amphibolites point to a tholeiitic basalt (to picrobasalt) protolith, compatible with an ocean-ridge or ocean-island environment. Small podiform chromitite lenses and chromite disseminations also occur; they are strongly deformed, metamorphosed and overprinted by hydrothermal alteration related to deformation, and were the subject of small scale mining. The ores comprise mainly chromite, ferritchromite, spinel, magnetite, ilmenite and scarce sulphides, as well as the secondary minerals stichtite and nimite. Results of this work exclude current interpretations of the Tarma ultramafites as autochtonous igneous intrusives, and point to a new interpretation for their emplacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Re-Os data for chromite separates from 10 massive chromitite seams sampled along the 550-km length of the 2.58-Ga Great Dyke layered igneous complex, Zimbabwe, record initial 187Os/188Os ratios in the relatively narrow range between 0.1106 and 0.1126. This range of initial 187Os/188Os values is only slightly higher than the value for the coeval primitive upper mantle (0.1107) as modeled from the Re-Os evolution of chondrites and data of modern mantle melts and mantle derived xenoliths. Analyses of Archean granitoid and gneiss samples from the Zimbabwe Craton show extremely low Os concentrations (3-9 ppt) with surprisingly unradiogenic present-day 187Os/188Os signatures between 0.167 and 0.297. Only one sample yields an elevated 187Os/188Os ratio of 1.008. Using these data, the range of crustal contamination of the Great Dyke magma would be minimally 0%-33% if the magma source was the primitive upper mantle, whereas the range estimated from Nd and Pb isotope systematics is 5%-25%. If it is assumed that the primary Great Dyke magma derived from an enriched deep mantle reservoir (via a plume), a better agreement can be obtained. A significant contribution from a long-lived subcontinental lithospheric mantle (SCLM) reservoir with subchondritic Re/Os to the Great Dyke melts cannot be reconciled with the Os isotope results at all. However, Os isotope data on pre-Great Dyke ultramafic complexes of the Zimbabwe Craton and thermal modeling show that such an SCLM existed below the Zimbabwe Craton at the time of the Great Dyke intrusion. It is therefore concluded that large melt volumes such as that giving rise to the Great Dyke were able to pass lithospheric mantle keels without significant contamination in the late Archean. Because the ultramafic-mafic melts forming the Great Dyke must have originated below the SCLM (which extends to at least a 200-km depth ), the absence of an SCLM signature precludes a subduction-related magma-generation process.