1000 resultados para chlorophyll formation
Resumo:
被子植物成熟的种子一般不合有叶绿素,但是莲(Nelumbo nucifera Gaertn.)的胚芽却具有鲜明的绿色,本文较详细地研究了莲胚芽不同于一般被子植物叶组织的色素和光台系统组成,并通过对莲胚芽成熟发育过程中的叶绿素合成和光合系统发育进行分析,探讨了莲胚芽光合特性形成的原因,最后对莲胚芽在黑暗中萌发能发育并建成光合系统的现象进行了研究,主要的结果如下: 1,莲胚芽不仅含有叶绿素和光合系统,而且其色素和光台系统组成均与莲叶以及其它被子植物的叶组织不同。莲胚芽的Chla/b值约为0.8左右,远远低于正常高等植物的Chla/b值(~3):莲胚芽的色素组成中不含有β-胡萝卜素;莲胚芽的光合系统没有电子传递活性,快速荧光动力学测定结果表明莲胚芽只有较高的固定荧光F。没有可变荧光Fv;原位低温荧光光谱检测表明莲胚芽只在679nm处有一个荧光发射主峰,没有正常的PSII和PSI荧光发射峰(683nm、692nm和730nm);部分变性的叶绿素蛋白复合物凝胶电泳分析结果表明莲胚芽叶绿体类囊体膜上只存在LHCII 一种叶绿素蛋白复合物(其中单体和二聚体形式的LHCII均有发现);Western Blots检测结果表明莲胚芽的LHCII组成比较单一,同时确证了莲胚芽不含有PSI的核心和天线蛋白组分。莲胚芽LHCII和莲叶LHCII在SDS-PAGE图谱上迁移距离相同,但是光谱分析表明二者不仅在Chla、Chlb的相对含量上不同,而且在叶绿素分子与蛋白的结合状态上也存在差异,这些差异主要是由一部分Chla分子造成的,Chlb分子在二者中的结合状态则比较~致。 2,对莲胚芽成熟过程中的光合系统发育进行研究,结果表明这个过程可以分为建成期(0-20天)、稳定期(20-30天)和降解期(30—40天)三个阶段。在建成期和稳定期内,莲胚芽外面的包被物可能不是完全遮光的,所以莲胚芽能感受到环境光信号,其叶绿素合成已经光合系统建成集中在此阶段内进行:在莲’胚芽成熟后期,莲胚芽外面的包被组织开始木质化,光信号无法再穿透它们,莲胚芽的光合系统发育进入降解期,叶绿素合成停止,己建成的光合系统开始降解,到莲胚芽成熟时,除LHCIl外,光合系统其余的叶绿素蛋白复合物都被降解了,所以莲胚芽具有不同于一般祓子植物叶组织的色素和光合系统组成。对莲胚芽的成熟发育过程进行遮光处理,结果发现遮光发育的莲胚芽发生明显黄化,这表明莲胚芽的叶绿素合成也离不开光照,在莲总基因组中检测不到编码DPOR的三个基因的同源序列,确证了莲胚芽不具有在黑暗中合成叶绿素的能力。 3,在黑暗中萌发生长的莲胚芽能够在相当长的时间内保持其叶绿素稳定,特别是Chla的含量在暗生长10天以内基本没有变化;原位低温荧光光谱检测表明暗萌发过程中莲苗有PSII和PSI的荧光发射峰形成,暗生长10天左右的莲苗具有比较明显的光合系统荧光发射峰,但是与自然光照下的发育过程相比,暗萌发莲苗的光合系统荧光发射峰出现较慢,而且PSI的荧光发射相对较弱;暗萌发莲苗在转绿以及冻融过程中的原位低温荧光光谱变化表明莲苗在黑暗中建成的光合系统不完善并且不稳定;对莲胚芽、暗萌发莲苗以及莲叶的叶绿体吸收光谱进行比较,结果显示暗萌发莲苗的叶绿体发育阶段介于莲胚芽和莲叶之间;叶绿素蛋白复合物凝胶电泳分离,SDS-PAGE,Western Blots免疫检测、以及叶绿素荧光诱导动力学结果均确证暗萌发莲苗有光合系统的发育,特别是PSI的出现;对暗萌发莲苗的光化学活性进行分析,结果表明暗中建成的PSII和PSI均具有电子传递活性:但是放氧复合物的发育不完全,对莲胚芽暗萌发过程光合系统建成的原因进行分析,推测叶绿素可能起了至关重要的作用,光对于莲胚芽萌发过程中的光合系统发育来说可能并不是必需的。
Resumo:
Iron (Fe) is essential for chlorophyll formation and plant growth. Irondeficiency chlorosis is a major nutritional disorder in several fruit trees cultivated in calcareous and alkaline soils, reducing fruit yield and quality and causing heavy economic losses. Since chelated Fe, the most widespread fertilizers used for preventing or curing Fe deficiency, pose risks of environmental pollution, the development of sustainable agronomic alternatives represents a priority for the fruit industry. In this work, we investigated the effectiveness of a bovine blood-derived product (BB; 0,125% Fe) for preventing Fe-deficiency in grapevine plants. During the vegetative season 2011 potted plants of five graft combinations: Sangiovese/S4O, Cabernet Sauvignon/S4O and Cabernet Sauvignon/140 Ruggeri, 140 Ruggeri/Cabernet Sauvignon, Vitis riparia/Cabernet Sauvignon were grown on calcareous soil. Soil treatments included: 1) Control; 2) Fe-EDDHA (Fe 6%); 3) Bovine-Blood (5 g/L); 4) Bovine-Blood (20 g/L). With the exception of Cabernet Sauvignon/S4O plants, Fe-EDDHA increased SPAD units (leaf chlorophyll content). Bovine-blood at low concentrations had similar or higher SPAD units than Fe-EDDHA. Increasing concentration resulted in further increases in SPAD units only in some graft combinations. Data highlight the efficiency of Fe blood-compound in the prevention of grapevine Fe-deficiency over one growing season.
Resumo:
Senescent higher plants degrade their chlorophylls (Chls) to polar colorless tetrapyrrolic Chl catabolites, which accumulate in the vacuoles. In extracts from degreened leaves of the tree Cercidiphyllum japonicum an unpolar catabolite of this type was discovered. This tetrapyrrole was named Cj-NCC-2 and was found to be identical with the product of a stereoselective nonenzymatic isomerization of a “fluorescent” Chl catabolite. This (bio-mimetic) formation of the “nonfluorescent” catabolite Cj-NCC-2 took place readily at ambient temperature and at pH 4.9 in aqueous solution. The indicated nonenzymatic process is able to account for a crucial step during Chl breakdown in senescent higher plants. Once delivered to the acidic vacuoles, the fluorescent Chl catabolites are due to undergo a rapid, stereoselective isomerization to the ubiquitous nonfluorescent catabolites. The degradation of the Chl macrocycle is thus indicated to rely on just two known enzymes, one of which is senescence specific and cuts open the chlorin macroring. The two enzymes supply the fluorescent Chl catabolites, which are “programmed” to isomerize further rapidly in an acidic medium, as shown here. Indeed, only small amounts of the latter are temporarily observable during senescence in higher plants.
Resumo:
Chlorophyll b is an ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. Its biosynthesis plays a key role in the adaptation to various light environments. We isolated six chlorophyll b-less mutants by insertional mutagenesis by using the nitrate reductase or argininosuccinate lyase genes as tags and examined the rearrangement of mutant genomes. We found that an overlapping region of a nuclear genome was deleted in all mutants and that this encodes a protein whose sequence is similar to those of methyl monooxygenases. This coding sequence also contains putative binding domains for a [2Fe-2S] Rieske center and for a mononuclear iron. The results demonstrate that a chlorophyll a oxygenase is involved in chlorophyll b formation. The reaction mechanism of chlorophyll b formation is discussed.
Resumo:
Practical testing of the feasibility of cyanobacterial inoculation to speed up the recovery of biological soil crusts in the field was conducted in this experiment. Results showed that cyanobacterial and algal cover climbed up to 48.5% and a total of 14 cyanobacterial and algal species were identified at the termination of inoculation experiment; biological crusts' thickness, compressive and chlorophyll a content increased with inoculation time among 3 years; moss species appeared in the second year; cyanobacterial inoculation increased organic carbon and total nitrogen of the soil; total salt, calcium carbonate and electrical conductivity in the soil also increased after inoculation. Diverse vascular plant communities composed of 10 and 9 species are established by cyanobacterial inoculation on the windward and leeward surface of the dunes, respectively, after 3 years. The Simpson index for the above two communities are 0.842 and 0.852, while the Shannon-Weiner index are 2.097 and 2.053, respectively. In conclusion, we suggest that cyanobacterial inoculation would be a suitable and effective technique to recover biological soil crusts, and may further restore the ecological system. (C) 2008 Published by Elsevier Ltd.
Resumo:
Tissue culture, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and spectra analysis were used for studying the aggregation mechanism of protoplasts from Bryopsis hypnoides Lamouroux and the discrepancy between the protoplast-regenerated plants and the wild type. The aggregation of protoplasts from B. hypnoides was observed in natural seawater and artificial seawater with different pH values, and the location and mechanism of the materials causing the aggregation were also studied. Results showed that the protoplasts could aggregate into some viable spheres in natural seawater and subsequently grow into mature individuals. Aggregation of the protoplasts depended exclusively upon the pH value (6-11), and the protoplasts aggregated best at pH 8-9. Some of the extruded protoplasts were separated into two parts by centrifugation: the pellet (PO) and the supernatant (PL). The PO could aggregate in artificial seawater (pH 8.3) but not in PL. No aggregation was found in PO cultured in natural seawater containing nigericin, which can dissipate the proton gradients across the membrane. These experiments suggest that the aggregation of protoplasts is proton-gradient dependent and the materials causing the aggregation were not in the vacuolar sap, but located on the surface or inside the organelles. Furthermore, the transfer of the materials across the membrane was similar to Delta pH-based translocation (Delta pH/TAT) pathway that occurs in the chloroplasts of higher plants and bacteria. Obvious discrepancies in both the total soluble proteins and the ratio of chlorophyll a to chlorophyll b between the regenerated B. hypnoides and the wild type were found, which may be related to the exchange of genetic material during aggregation of the organelles. In the process of development, diatom Amphora coffeaeformis Agardh attached to the protoplast aggregations, retarding their further development, and once they were removed, the aggregations immediately germinated, which showed that diatoms can affect the development of other algae.
Resumo:
Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass, mixing and tidal front on these patterns. The results indicated that the Chl a concentration was 2.43 +/- 2.64 (Mean +/- SD) mg m(-3) in April (range, 0.35 to 17.02 mg m(-3)) and 1.75 +/- 3.10 mg m(-3) in September (from 0.07 to 36.54 mg m(-3)) in 2003. Additionally, four areas with higher Chl a concentrations were observed in the surface water in April, while two were observed in September, and these areas were located within or near the point at which different water masses converged (temperature front area). The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September. Specifically, higher Chl a concentrations were observed along the coastal line in September, which consisted of a mixing area and a tidal front area, although the distributional pattern of Chl a concentrations varied along transects in April. The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0-10 m) for onshore stations and the thermocline layer (10-30 m) for offshore stations in September, while the greatest concentrations were generally observed in surface and subsurface water (0-10 m) in April. The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed. Although physical forces had a close relationship with Chl a distribution, more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS.
Resumo:
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Diatoms are renowned for their robust ability to perform NPQ (Non-Photochemical Quenching of chlorophyll fluorescence) as a dissipative response to heightened light stress on photosystem II, plausibly explaining their dominance over other algal groups in turbulent light environs. Their NPQ mechanism has been principally attributed to a xanthophyll cycle involving the lumenal pH regulated reversible de-epoxidation of diadinoxanthin. The principal goal of this dissertation is to reveal the physiological and physical origins and consequences of the NPQ response in diatoms during short-term transitions to excessive irradiation. The investigation involves diatom species from different originating light environs to highlight the diversity of diatom NPQ and to facilitate the detection of core mechanisms common among the diatoms as a group. A chiefly spectroscopic approach was used to investigate NPQ in diatom cells. Prime methodologies include: the real time monitoring of PSII excitation and de-excitation pathways via PAM fluorometry and pigment interconversion via transient absorbance measurements, the collection of cryogenic absorbance spectra to measure pigment energy levels, and the collection of cryogenic fluorescence spectra and room temperature picosecond time resolved fluorescence decay spectra to study excitation energy transfer and dissipation. Chemical inhibitors that target the trans-thylakoid pH gradient, the enzyme responsible for diadinoxanthin de-epoxidation, and photosynthetic electron flow were additionally used to experimentally manipulate the NPQ response. Multifaceted analyses of the NPQ responses from two previously un-photosynthetically characterised species, Nitzschia curvilineata and Navicula sp., were used to identify an excitation pressure relief ‘strategy’ for each species. Three key areas of NPQ were examined: (i) the NPQ activation/deactivation processes, (ii) how NPQ affects the collection, dissipation, and usage of absorbed light energy, and (iii) the interdependence of NPQ and photosynthetic electron flow. It was found that Nitzschia cells regulate excitation pressure via performing a high amplitude, reversible antenna based quenching which is dependent on the de-epoxidation of diadinoxanthin. In Navicula cells excitation pressure could be effectively regulated solely within the PSII reaction centre, whilst antenna based, diadinoxanthin de-epoxidation dependent quenching was implicated to be used as a supplemental, long-lasting source of excitation energy dissipation. These strategies for excitation balance were discussed in the context of resource partitioning under these species’ originating light climates. A more detailed investigation of the NPQ response in Nitzschia was used to develop a comprehensive model describing the mechanism for antenna centred non-photochemical quenching in this species. The experimental evidence was strongly supportive of a mechanism whereby: an acidic lumen triggers the diadinoxanthin de-epoxidation and protonation mediated aggregation of light harvesting complexes leading to the formation of quencher chlorophyll a-chlorophyll a dimers with short-lived excited states; quenching relaxes when a rise in lumen pH triggers the dispersal of light harvesting complex aggregates via deprotonation events and the input of diadinoxanthin. This model may also be applicable for describing antenna based NPQ in other diatom species.
Resumo:
The study mainly intends to investigate the meteorological aspects associated with the formation of mud banks along southwest coast of India. During the formation of mud bank, the prominent monsoon organized convection is located in the equatorial region and relatively low clouding over Indian mainland. The wind core of the low level jet stream passes through the monsoon organized convection. When the monsoon organized convection is in the equatorial region, the low level wind over the southwest coast of India is parallel to the coastline and toward south. This wind along the coast gives rise to Ekman mass transport away from the coastline and subsequently formation of mud bank, if the high wind stress persists continuously for three or more days. As a result of the increased alongshore wind stress, the coastal upwelling increases. An increase in chlorophyll-a concentration and total chlorophyll can also be seen associated with mudbank formation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coffea arabica L. is considered to be sensitive to low temperatures throughout its life cycle. In some Brazilian regions, seedling production occurs under shade conditions and during the winter, with average temperatures of around 10 °C. The formation and functioning of the photosynthetic apparatus are strongly controlled by temperature. This study aimed to assess the changes that occurred in pigment contents, lipid peroxidation and variables of chlorophyll a fluorescence during the greening process of coffee seedlings submitted to chilling. Results indicate that saturation of the photosynthetic activity of coffee seedlings occurred before saturation of the accumulation of chloroplastid pigments. Pigment accumulation during the greening process is far beyond the metabolic needs for the maintenance of photosynthetic activity, more specifically of photosystem II. Coffee seedlings attained a quantum yield equivalent to that of the control with approximately half the chlorophyll a and b contents and around 40% of the carotenoid. Low temperature decreases the metabolism of seedlings, consequently reducing free radical production and lipid peroxidation. The chilling temperature (10 °C) used inhibited the accumulation of chloroplast pigments, in turn altering the capacity of the photosynthetic tissue of etiolated coffee seedlings to capture and transfer photon energy to the photosystem II reaction centre. These alterations were better demonstrated by O-J-I-P chlorophyll a fluorescence transients, rather than F v/F m and F v/F 0 ratios. © 2009 Elsevier B.V. All rights reserved.
Resumo:
In dieser Arbeit wurde die Pigmentbindung verschiedener Pflanzenproteine untersucht, um daraus Rückschlüsse auf ihre Funktion zu ziehen. PsbS, die S-Untereinheit des Photosystems II, konnte mit Pigmenten isoliert werden. Es wurde kein Hinweis auf eine spezifische Wechselwirkung der Chromophore gefunden, Ergebnisse wie pigmentabhängig stärkere Helixbildung unterstützen jedoch die Vermutung, PsbS fungiere als transienter Pigmentcarrier. Die Sequenzverwandten OHP, Sep1 und Sep2 binden entweder keine Pigmente oder nur so schwach, dass eine Bindung mit den verwendeten Methoden nicht nachweisbar ist.WSCP aus Blumenkohl ist ein wasserlösliches chlorophyllbindendes Protein mit unbekannter Funktion. In dieser Arbeit wurde ein rekombinantes WSCP mit N-terminal angehängtem His-Tag hergestellt und überexprimiert. WSCP-his tetramerisiert pigmentabhängig und bindet Chlorophylle, nicht aber Carotinoide. In seinen biochemischen und spektroskopischen Eigenschaften gleicht das rekombinante dem nativen WSCP und kann als Werkzeug für Untersuchungen zur Funktion herangezogen werden. Rekonstitutionsexperimente mit Chlorophyll-Derivaten zeigten, dass der Phytolrest für die Oligomerisierung des Proteins verantwortlich ist. WSCP bindet außerdem die Chlorophyll-Vorstufen Chlorophyllid und Mg-Protoporphyrin IX. Es könnte sich um ein Carrierprotein handeln, welches die Vorstufen von der Chloroplastenhülle durch das Stroma zur Thylakoidmembran transportiert. Der Fall eines chlorophyllbindenden Pflanzenproteins ohne Carotinoide ist einmalig. Messungen zu Photostabilität und Singulettsauerstoffbildung zeigten, dass es dennoch gebundenes Chlorophyll vor photooxidativer Schädigung schützt.
Resumo:
The seasonal appearance of a deep chlorophyll maximum (DCM) in Lake Superior is a striking phenomenon that is widely observed; however its mechanisms of formation and maintenance are not well understood. As this phenomenon may be the reflection of an ecological driver, or a driver itself, a lack of understanding its driving forces limits the ability to accurately predict and manage changes in this ecosystem. Key mechanisms generally associated with DCM dynamics (i.e. ecological, physiological and physical phenomena) are examined individually and in concert to establish their role. First the prevailing paradigm, “the DCM is a great place to live”, is analyzed through an integration of the results of laboratory experiments and field measurements. The analysis indicates that growth at this depth is severely restricted and thus not able to explain the full magnitude of this phenomenon. Additional contributing mechanisms like photoadaptation, settling and grazing are reviewed with a one-dimensional mathematical model of chlorophyll and particulate organic carbon. Settling has the strongest impact on the formation and maintenance of the DCM, transporting biomass to the metalimnion and resulting in the accumulation of algae, i.e. a peak in the particulate organic carbon profile. Subsequently, shade adaptation becomes manifest as a chlorophyll maximum deeper in the water column where light conditions particularly favor the process. Shade adaptation mediates the magnitude, shape and vertical position of the chlorophyll peak. Growth at DCM depth shows only a marginal contribution, while grazing has an adverse effect on the extent of the DCM. The observed separation of the carbon biomass and chlorophyll maximum should caution scientists to equate the DCM with a large nutrient pool that is available to higher trophic levels. The ecological significance of the DCM should not be separated from the underlying carbon dynamics. When evaluated in its entirety, the DCM becomes the projected image of a structure that remains elusive to measure but represents the foundation of all higher trophic levels. These results also offer guidance in examine ecosystem perturbations such as climate change. For example, warming would be expected to prolong the period of thermal stratification, extending the late summer period of suboptimal (phosphorus-limited) growth and attendant transport of phytoplankton to the metalimnion. This reduction in epilimnetic algal production would decrease the supply of algae to the metalimnion, possibly reducing the supply of prey to the grazer community. This work demonstrates the value of modeling to challenge and advance our understanding of ecosystem dynamics, steps vital to reliable testing of management alternatives.
Resumo:
Tetrapyrrole pigments isolated from sediments retrieved during Leg 57 include pheophytin-a, a myriad of chlorins, free-base deoxophylloerythroetioporphyrin (DPEP), as well as copper and nickel porphyrins. Their richness, both qualitatively and quantitatively, in chlorin tetrapyrroles affords a relatively complete study on the early diagenesis of chlorophyll. Our studies, coupled with those in the preceding chapter by Louda et al., point out the influence of pre- and postdepositional environments upon the mode of chlorophyll diagenesis. Formation of tetrapyrroles, collectively called "petroporphyrins," is seen to occur in only a limited set of environmental conditions (see Baker and Palmer, 1978). The more generalized route of chlorophyll diagenesis, at least in the ocean, results in removal of tetrapyrrole pigment, from the fossil record. Late diagenetic products, metalloporphyrins, are found to represent an extremely minor component of the tetrapyrrole assemblage in sediments studied from the Japan Trench. The products of chlorophyll diagenesis isolated from Japan Trench sediments allow expansion of previous diagenetic schemes (Baker and Palmer, 1978; Triebs, 1936) and indicate directions for future studies.