6 resultados para chlorophenylpiperazine
Resumo:
Chlorophenylpiperazines (CPP) are psychotropic drugs used in nightclub parties and are frequently used in a state of sleep deprivation, a condition which can potentiate the effects of psychoactive drugs. This study aimed to investigate the effects of sleep deprivation and sleep rebound (RB) on anxiety-like measures in mCPP-treated mice using the open field test. We first optimized our procedure by performing dose-effect curves and examining different pretreatment times in naïve male Swiss mice. Subsequently, a separate cohort of mice underwent paradoxical sleep deprivation (PSD) for 24 or 48h. In the last experiment, immediately after the 24h-PSD period, mice received an injection of saline or mCPP, but their general activity was quantified in the open field only after the RB period (24 or 48h). The dose of 5mgmL(-1) of mCPP was the most effective at decreasing rearing behavior, with peak effects 15min after injection. PSD decreased locomotion and rearing behaviors, thereby inhibiting a further impairment induced by mCPP. Plasma concentrations of mCPP were significantly higher in PSD 48h animals compared to the non-PSD control group. Twenty-four hours of RB combined with mCPP administration produced a slight reduction in locomotion. Our results show that mCPP was able to significantly change the behavior of naïve, PSD, and RB mice. When combined with sleep deprivation, there was a higher availability of drug in plasma levels. Taken together, our results suggest that sleep loss can enhance the behavioral effects of the potent psychoactive drug, mCPP, even after a period of rebound sleep.
Resumo:
Designer drug is a term used to describe psychoactive drugs of abuse which are usually synthesized by modifying the molecular structures of existing drugs of abuse. The term gained widespread popularity when MDMA (ecstasy) experienced a popularity boom in the mid 1980´s. In Brazil, designer drugs seizures have increased in the last few years, and actually tablets with unknown psychoactive compounds began to be forwarded to the Forensic Laboratories. This work describes the analytical assays that were performed to identify the chlorophenylpiperazine, a psychoactive substance first time identified in seized tablets in Sao Paulo state.
Resumo:
Context: Ketamine evokes psychosislike symptoms, and its primary action is to impair N-methyl-D-aspartate glutamate receptor neurotransmission, but it also induces secondary increases in glutamate release. Objectives: To identify the sites of action of ketamine in inducing symptoms and to determine the role of increased glutamate release using the glutamate release inhibitor lamotrigine. Design: Two experiments with different participants were performed using a double-blind, placebo-controlled, randomized, crossover, counterbalanced-order design. In the first experiment, the effect of intravenous ketamine hydrochloride on regional blood oxygenation level dependent (BOLD) signal and correlated symptoms was compared with intravenous saline placebo. In the second experiment, pretreatment with lamotrigine was compared with placebo to identify which effects of ketamine are mediated by increased glutamate release. Setting: Wellcome Trust Clinical Research Facility, Manchester, England. Participants: Thirty-three healthy, right-handed men were recruited by advertisements. Interventions: In experiment 1, participants were given intravenous ketamine (1-minute bolus of 0.26 mg/ kg, followed by a maintenance infusion of 0.25 mg/ kg/ h for the remainder of the session) or placebo (0.9% saline solution). In experiment 2, participants were pretreated with 300 mg of lamotrigine or placebo and then were given the same doses of ketamine as in experiment 1. Main Outcome Measures: Regional BOLD signal changes during ketamine or placebo infusion and Brief Psychiatric Rating Scale and Clinician- Administered Dissociative States Scale scores. Results: Ketamine induced a rapid, focal, and unexpected decrease in ventromedial frontal cortex, including orbitofrontal cortex and subgenual cingulate, which strongly predicted its dissociative effects and increased activity in mid- posterior cingulate, thalamus, and temporal cortical regions (r= 0.90). Activations correlated with Brief Psychiatric Rating Scale psychosis scores. Lamotrigine pretreatment prevented many of the BOLD signal changes and the symptoms. Conclusions: These 2 changes may underpin 2 fundamental processes of psychosis: abnormal perceptual experiences and impaired cognitive- emotional evaluation of their significance. The results are compatible with the theory that the neural and subjective effects of ketamine involve increased glutamate release.
Resumo:
Designer drug is a term used to describe psychoactive drugs of abuse which are usually synthesized by modifying the molecular structures of existing drugs of abuse. The term gained widespread popularity when MDMA (ecstasy) experienced a popularity boom in the mid 1980´s. In Brazil, designer drugs seizures have increased in the last few years, and actually tablets with unknown psychoactive compounds began to be forwarded to the Forensic Laboratories. This work describes the analytical assays that were performed to identify the chlorophenylpiperazine, a psychoactive substance first time identified in seized tablets in Sao Paulo state.
Resumo:
The 5-HT2B/2C receptor antagonist SB 206553 exerts anxiolytic effects in rat models of anxiety. However, these effects have been reported for standard rat strains, thus raising the issue of SB 206553 effects in rat strains displaying different levels of anxiety. Herein, the effects of SB 206553 in a 5-min elevated plus-maze test of anxiety were compared to those of the reference anxiolytic, diazepam, in two rat strains respectively displaying high (Lewis rats) and low (spontaneously hypertensive rats, SHR) anxiety. Diazepam (0.37, 0.75, or 1.5 mg/kg; 30 min before testing) increased in a dose-dependent manner the behavioral measures in SHR, but not in Lewis rats. On the other hand, SB 206553 (1.25, 2.5, or 5 mg/kg; 30 min before testing) failed to alter the anxiety parameters in both strains, whereas it increased closed arm entries in Lewis rats, suggesting that it elicited hyperactivity in the latter strain. Accordingly, the hypolocomotor effect of the nonselective 5-HT2B/2C receptor agonist m-chlorophenylpiperazine (1.5 mg/kg ip 20 min before a 15-min exposure to an activity cage) was prevented by the 1.25 and 2.5 mg/kg doses of SB 206553 in Lewis rats and SHR, respectively. Compared with SHR, Lewis rats may display a lower response to benzodiazepine-mediated effects and a more efficient control of locomotor activity by 5-HT2B/2C receptors.
Resumo:
Great strides have been made in the last few years in the pharmacological treatment of neuropsychiatric disorders, with the introduction into the therapy of several new and more efficient agents, which have improved the quality of life of many patients. Despite these advances, a large percentage of patients is still considered “non-responder” to the therapy, not drawing any benefits from it. Moreover, these patients have a peculiar therapeutic profile, due to the very frequent application of polypharmacy, attempting to obtain satisfactory remission of the multiple aspects of psychiatric syndromes. Therapy is heavily individualised and switching from one therapeutic agent to another is quite frequent. One of the main problems of this situation is the possibility of unwanted or unexpected pharmacological interactions, which can occur both during polypharmacy and during switching. Simultaneous administration of psychiatric drugs can easily lead to interactions if one of the administered compounds influences the metabolism of the others. Impaired CYP450 function due to inhibition of the enzyme is frequent. Other metabolic pathways, such as glucuronidation, can also be influenced. The Therapeutic Drug Monitoring (TDM) of psychotropic drugs is an important tool for treatment personalisation and optimisation. It deals with the determination of parent drugs and metabolites plasma levels, in order to monitor them over time and to compare these findings with clinical data. This allows establishing chemical-clinical correlations (such as those between administered dose and therapeutic and side effects), which are essential to obtain the maximum therapeutic efficacy, while minimising side and toxic effects. It is evident the importance of developing sensitive and selective analytical methods for the determination of the administered drugs and their main metabolites, in order to obtain reliable data that can correctly support clinical decisions. During the three years of Ph.D. program, some analytical methods based on HPLC have been developed, validated and successfully applied to the TDM of psychiatric patients undergoing treatment with drugs belonging to following classes: antipsychotics, antidepressants and anxiolytic-hypnotics. The biological matrices which have been processed were: blood, plasma, serum, saliva, urine, hair and rat brain. Among antipsychotics, both atypical and classical agents have been considered, such as haloperidol, chlorpromazine, clotiapine, loxapine, risperidone (and 9-hydroxyrisperidone), clozapine (as well as N-desmethylclozapine and clozapine N-oxide) and quetiapine. While the need for an accurate TDM of schizophrenic patients is being increasingly recognized by psychiatrists, only in the last few years the same attention is being paid to the TDM of depressed patients. This is leading to the acknowledgment that depression pharmacotherapy can greatly benefit from the accurate application of TDM. For this reason, the research activity has also been focused on first and second-generation antidepressant agents, like triciclic antidepressants, trazodone and m-chlorophenylpiperazine (m-cpp), paroxetine and its three main metabolites, venlafaxine and its active metabolite, and the most recent antidepressant introduced into the market, duloxetine. Among anxiolytics-hypnotics, benzodiazepines are very often involved in the pharmacotherapy of depression for the relief of anxious components; for this reason, it is useful to monitor these drugs, especially in cases of polypharmacy. The results obtained during these three years of Ph.D. program are reliable and the developed HPLC methods are suitable for the qualitative and quantitative determination of CNS drugs in biological fluids for TDM purposes.