9 resultados para chlamydospore
Resumo:
Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis and is known as a temperature-dependent dimorphic fungus. Even though several routes of transformation from a mycelial to yeast forms have been reported, the route via chlamydospore is the most important. At this time, conditions of temperature, nutrients, population of yeast cells and concentration of agar which influence chlamydospore formation are examined. P. brasiliensis strain Pb-18 was used in this experiment. Its yeast cells were mixed with agar media, and were cultured at various temperatures. The results were as follows: 1. At 25°C, more chlamydospores were formed in poor media than in rich ones. 2. At over 25°C, the number of chlamydospores increased in proportion to the increase in temperature. 3. Chlamydospores were most frequently formed when 106 yeast cell units were mixed with 25ml of medium. 4. One and 2.0‰ agars were the most adequate concentrations for chlamydospore formation.
Resumo:
O fungo Pochonia chlamydospoia é um potencial agente de controlo biológico dos nemátodes-das-galhas-radiculares. Com este trabalho, pretendeu-se avaliar a eficácia de inoculações de clamidósporos no solo, no estabelecimento de uma população do fungo no solo e na raiz de tomateiro em estufa com níveis de densidade iguais ou superiores aos considerados como necessários para um eficaz controlo dos nematodes-das-galhas-radiculares. Ao longo de dois anos de ensaio, fórum efetuadas inoculações do isolado PcMR e avaliada a densidade de fungo no solo e na raiz, As inoculações efetuadas permitiram estabelecer uma população de P. chlamydosporia no solo e atingir os valores de densidade pretendidos. No entanto, os valores pretendidos para colonização da raiz pelo fungo foram atingidos apenas no primeiro ano. Foi igualmente demonstrada a capacidade do fungo em se manter no solo durante longos períodos de tempo mesmo na ausência de cultura e em condições adversas de humidade e temperatura. /ABSTRACT: Pochonia chlamydosporia is a potential root-knot nematode biological control agent. The aim of this work was to evaluate the effectiveness of chlamydospore inoculations at the soil, for the establishment at both soil and greenhouse tomato root, of a fungus population in density levels equal or superior to those considered as needed for an effective control of root-knot nematode. Along two years, several inoculations using the Portuguese isolate PcMR were made and the density of fungus at the soil and roots studied. These inoculations allowed the establishment of a population of P. chlamydosporia at the soil and achieve the desired density values. However, only in the first year of assay, the desired values of root colonization by fungus were achieved. lt was also demonstrated that P. chlamydosporia can survive for itself at the soil for a long period of time even in the absence of plant culture and in adverse moist and temperature conditions.
Resumo:
Candida dubliniensis is a recently described Candida species associated with oral candidosis that exhibits a high degree of phenotypic similarity to Candida albicans. However, these species show differences in levels of resistance to antimycotic agents and ability to cause infections. Therefore, accurate clinical identification of C. dubliniensis and C. albicans species is important in order to treat oral candidal infections. Phenotypic identification methods are easy-to-use procedures for routine discrimination of oral isolates in the clinical microbiology laboratory. However, C. dubliniensis may be so far underreported in clinical samples because most currently used identification methods fail to recognize this yeast. Phenotypic methods depend on growth temperature, carbon source assimilation, chlamydospore and hyphal growth production, positive or negative growth on special media and intracellular enzyme production, among others. In this review, some phenotypic methods are presented with a special emphasis on the discrimination of C. dubliniensis and C. albicans.
Resumo:
Phytophthora nicotianae was added to pasteurized soil at the rate of 500 laboratory-produced chlamydospores per gram of soil and exposed to temperatures ranging from 35 to 53°C for 20 days. The time required to reduce soil populations to residual levels (0.2 propagule per gram of soil or less) decreased with increasing temperatures. Addition of cabbage residue to the soil reduced the time required to inactivate chlamydo spores. Temperature regimes were established to simulate daily temperature changes observed in the field, with a high temperature of 47°C for 3 h/day, and were good estimators of the efficacy of soil solarization for the control of P. nicotianae in soil. Cabbage amendment reduced the time required to inactivate chlamydospores of P. nicotianae and its effect was more pronounced at lower temperature regimes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this study was to evaluate the influence of complete or partial removable dental prostheses (RDPs) on the frequency of Candida albicans isolated from the mouth and the presence of oral candidiasis in human immunodeficiency virus positive (HIV+) patients correlated with CD4 levels. Materials and Methods: One hundred ninety-three HIV+ patients were evaluated; 68 had RDPs and 125 did not. CD4 cell count was obtained after blood sampling and performed on the day of clinical examination. The material was collected from the buccal mucosa for isolation of yeasts with a sterile swab and seeded onto Sabouraud dextrose agar with chloramphenicol. C albicans strains were identified by testing germ tubes and chlamydospore formation and biochemical (zymogram, auxanogram) characteristics. The results were subjected to the Fischer exact test and chi-square tests. Results: C albicans were isolated from 45(66.17%) patients who had RDPs and 48 (38.4%) who did not (P = .0003). The presence of oral candidiasis was observed in 14 patients (7.25%), and 10 of the 14 (71.43%) were RDP users. The absence of candidiasis occurred in 121 (67.59%) nonusers and 58 (32.40%) users of RDPs (P = .0065). The mean CD4 cell count was lower in patients with oral candidiasis regardless of the use of RDPs. Conclusion: The use of RDPs was an important factor in the isolation of C albicans among HIV+ patients, and CD4 level seems to play a role in the presence of oral candidiasis. Int J Prosthodont 2012;25:127-131.
Resumo:
We have analyzed the role of chitin, a cell-wall polysaccharide, in the virulence of Candida albicans. Mutants with a 5-fold reduction in chitin were obtained in two ways: (i) by selecting mutants resistant to Calcofluor, a fluorescent dye that binds to chitin and inhibits growth, and (ii) by disrupting CHS3, the C. albicans homolog of CSD2/CAL1/DIT101/KT12, a Saccharomyces cerevisiae gene required for synthesis of approximately 90% of the cell-wall chitin. Chitin-deficient mutants have no obvious alterations in growth rate, sugar assimilation, chlamydospore formation, or germ-tube formation in various media. When growing vegetatively in liquid media, the mutants tend to clump and display minor changes in morphology. Staining of cells with the fluorescent dye Calcofluor indicates that CHS3 is required for synthesis of the chitin rings found on the surface of yeast cells but not formation of septa in either yeast cells or germ tubes. Despite their relatively normal growth, the mutants are significantly less virulent than the parental strain in both immunocompetent and immunosuppressed mice; at 13 days after infection, survival was 95% in immunocompetent mice that received chs3/chs3 cells and 10% in immunocompetent mice that received an equal dose of chs3/CHS3 cells. Chitin-deficient strains can colonize the organs of infected mice, suggesting that the reduced virulence of the mutants is not due to accelerated clearing.